Как воздух проводит тепло?

На нашем интернет-уроке по окружающему миру мы поговорим о том, без чего бы не существовали мы, природа, планета Земля. Да! Это воздух. Что такое воздух?…

Воздух и свойства воздуха

Воздух — это смесь газов: азота, кислорода, углекислого газа и других.

Газы не имеют формы. Они распространяются во все стороны и заполняют весь доступный объём.

Воздушная оболочка Земли — атмосфера — защищает нас от губительных космических лучей, от перегрева теплом, исходящим от Солнца, от переохлаждения.

Слои атмосферы:

Воздух необходим всему живому для дыхания и для создания органических веществ.
Смотрим познавательный видеоролик с 5.55

Какие свойства имеет воздух?

О свойствах поподробнее.

Сейчас вы видите все то, что вокруг вас: стены, компьютер, шкаф, за окном – дома, деревья, облака. А можем ли мы видеть воздух? Верите мне, что воздух находится вокруг нас повсюду? Есть ли он вообще? Может, его придумали? Докажем это?

Исследование 1.

Возьмите соломинку и опустите ее в стакан с водой. Слегка подуйте в соломинку. Что появилось? Появятся пузырьки воздуха.

Вывод: При помощи зрения воздух всё же можно обнаружить в некоторых случаях.

Посмотрите на комнатные растения. Какого они цвета? А ваши стены? А как вы думаете, какого цвета воздух?
Открываем первое свойство воздуха: воздух невидимый и бесцветный.

Исследование 2. А сейчас вдохните глубоко, что вы почувствовали?… Пахнет чем-нибудь воздух? А как же запахи в кондитерской, аптеке? … Запах, мы ощущаем, когда частицы вещества попадают к нам в нос.

Вывод: Чистый воздух запаха не имеет.

Исследование 3. Можно ли попробовать воздух на вкус? Лизните его. Какое свойства воздуха мы откроем?

Вывод: воздух не имеет вкуса

Исследование 4. Возьмите в руки книгу. Какой она формы? А теперь попробуйте взять в руки воздух. Получилось? Имеет ли воздух форму?

Вывод: воздух не имеет форму.

Исследование 5. Воздух упругий

Возьмите мяч, сожмите его руками. Ударьте мячом об пол. Что наблюдаете? Какое свойство воздуха обнаружилось?

Теперь посмотрите на эти два шарика. Какой из них более упругий? Почему?

Могу ли я сделать первый шарик таким же упругим, как и второй? Что для этого нужно сделать?…. Верно, добавить воздуха. А что происходит с шариком, когда мы добавляем воздух?…… (Воздух сжимается).

У вас, наверняка, есть велосипед. Какое свойство воздуха используется при накачивании насосом камеры колеса велосипеда? ….. также прыжки на спортивных велосипедов делают как раз из-за воздуха в шинах.

А где еще используется это свойство?…..

Исследование 6. Воздух легче воды, то есть менее плотный, чем вода.

Наберите в чашку воды. Попробуйте утопить в ней теннисный шарик. Что наблюдаете? Какое свойство воздуха обнаружили?

Вот почему вы не боитесь плавать, надев спасательный круг.

Исследование 7. Воздух — плохо проводит тепло.

Почему в домах в окна вставляют двойные рамы? Что находится между рамами? Какое свойство воздуха здесь проявляется?

Верно, между этими двойными стеклами находится воздух, который не пропускает холод и дома становится гораздо теплее. Так как воздух имеет низкую плотность, он плохо проводит тепло.

Если воздух плохо проводит тепло, почему земля под снегом остается теплой, и корни растений не замерзают? Что же греет землю, снег ли?….

Между снежинками — воздух, он не пропускает холод.

Подумайте, как сидят птички, когда на улице мороз? Почему?…. А что происходит с мехом животных к зиме?…

Мех животных, перья птиц сами по себе не греют, а греет воздух, находящийся между ними. Когда холодно, звери поднимают шерсть, птицы хохлятся, а человек надевает тёплый свитер, шубу.

Исследование 8. При нагревании расширяется

Почему люди в бане поднимаются на полок, ближе к потолку, чтобы попариться? Почему батареи в комнатах устанавливают внизу, под окном? Что происходит с горячим воздухом?

Да, когда воздух нагревается, воздух расширяется, то есть становится легче и поднимается вверх.

Теперь вы сможете объяснить по какому принципу летает воздушный шар?

А китайские фонарики?

А может ли быть одинаковая температура: днем и ночью? зимой и летом? у полюсов и на экваторе?

Что происходит с нагревшимся воздухом? (Поднимается). Что занимает освободившееся место? (Холодный воздух).

А это значит, на Земле происходит постоянное перемещение воздуха, а попросту дует ветер.

Ветер — это движение воздуха.

Ветра приносят и пользу и вред.

Представьте на минуту, что на Земле нет ветра. Нет ветра в нашем промышленно развитом городе, где есть заводы, фабрики, шахты, разрезы, взрывы. Что произойдет?

Трубы от заводов и фабрик выбрасывают дым высоко в небо. Там на высоте дуют мощные ветры. Они подхватывают клубы дыма и рвут их в клочья, развеивают, смешивают с чистым воздухом, быстро снижают опасность ядовитых газов. Высокие трубы отводят беду от живущих поблизости людей.

Есть ветра, которые приносят много бед.

Ураганы
тайфуны
циклоны

Смерчи
(торнадо)

— Все это бури, скорость ветра которых достигает 120 км/ч. Такие ветры способны снести здания. Обычно сопровождаются ливнями. — Это вращающиеся воронки со скоростью ветра до 5000 км/ч. Воронка засасывает все на своем пути (случай с розовыми лягушками).

Как использует человек свойства воды

Человек издавна научился использовать силу воздуха, как источник энергии.
Он изобрел парус, который позволил ему отправиться в путешествие.

Уже 2-3 тысячи лет назад египтяне плавали по Средиземному морю на вполне совершенных парусных судах.
В Средние века строились ветряные колеса для работы по хозяйству.

Однако и в современности ветряной двигатель играет все большую роль, так как в отличие от других источников он не загрязняет атмосферу.

Одним из способов передвижения по воздуху – воздушный шар, заполненный более легким, чем воздух газом или просто нагретым воздухом. Началом эры воздухоплавания следует считать 183 год, когда братья Монгольфье поднялись в воздух на воздушном шаре, заполненном горячим воздухом.

На воду нельзя надёжно опереться — она жидкая. Однако водному лыжнику это удаётся, если развить достаточную скорость. Воздух — ещё менее плотный, чем вода. Но если развить большую скорость , то оказывается на него можно опереться. Это открытие позволило создать более совершенные летательные аппараты.

Возможность передвижения по воздуху летательных аппаратов связана с тем, что воздух обладает выталкивающей силой. Например, если заполнить воздушный шарик более лёгким газом — водородом, то они полетят вверх.

Парашют может планировать по воздуха благодаря плотности воздуха.

Вы знаете, что вода при нагревании превращается в пар, газообразное состояние, а если пар остудить — получится опять жидкое состояние.

Оказывается, любой газ тоже можно превратить в жидкость, если охладить. Только для этого потребуется очень низкая температура.

Углекислый газ, охлажденный до твёрдого состояния, используют для замораживания продуктов и называют сухим льдом. А тает он при -78 градусов С.

Жидкий азот образуется при температуре -196 гр.С. Его используют в медицине.

Чистый кислород используют для дыхания больных. Им наполняют акваланги для подводного дыхания. кислородные маски есть в самолётах для чрезвычайных ситуаций.

А жидкий кислород нужен для окисления топлива космических кораблей. Ведь без кислорода невозможно не только дыхание, но и горение.

Все мы понимаем, что воздух нашей планете просто необходим. Его следует беречь!

ПРОВЕРОЧНАЯ работа

Чтобы защитить жилье от теплопотерь и повышенной влажности, его покрывают различными типами утеплителей. Выбрать лучший из них очень сложно, ведь у каждого изделия собственные уникальные свойства и область применения. Теплоизоляционные материалы, которые применяются в современном строительстве, с одной стороны экологичны, с другой – удобны в монтаже. Изучив основные виды утеплителей, можно выбрать лучший теплоизоляционный материал, отвечающий именно вашим потребностям.

Основные виды утеплителей

Современные теплоизоляционные материалы для применения в строительстве и ремонте делятся на множество разновидностей: промышленные и бытовые, природные и искусственные, гибкие и жесткие теплоизоляционные материалы и т.д.

К примеру, по форме современная теплоизоляция разделяется на такие образцы, как:

  • рулоны;
  • листовой;
  • единичный;
  • сыпучий.

По структуре отличают следующие типы термоизоляции со своей уникальной особенностью:

  • волокнистые;
  • ячеистые;
  • зернистые.

По виду сырья выделяют такие изделия различного класса качества:

  1. Органические, природные или натуральные утеплители — это пробковая кора, целлюлозная вата, пенополистирол, древесное волокно, пенопласт, бумажные гранулы, торф. Эти виды строительных теплоизоляционных материалов применяются исключительно внутри помещения, чтобы минимизировать высокую влажность. Однако природные строительные термоизоляторы не огнеупорны.
  2. Неорганические теплоизоляционные материалы — горные породы, стекловолокно, пеностекло, минераловатные утеплители, вспененный каучук, ячеистые бетоны, каменная вата, базальтовое волокно. Хороший изолятор тепла из данной категории отличается высокой степенью паропроницаемости и огнестойкости. Особенно эффективно утепление изделием с гидрофобизирующими добавками.
  3. Смешанные — перлит, асбест, вермикулит и другие утеплители из вспененных горных пород. Отличаются наилучшим качеством и, разумеется, повышенной стоимостью. Это самые дорогие марки лучших теплоизоляционных материалов. Поэтому таким утеплителем покрывают помещения намного реже, чем более экономными материалами.

Если нужно сделать термическую изоляцию трубопровода в стене, то для этого применяются специальные «рукава» повышенной плотности.

Определение лучшего изделия зависит не только от цены. Их выбирают по качественным характеристикам, эргономичным свойствам и экологичности.

Какие задачи решает теплоизоляционный материал

Теплоизоляция является одним из приоритетных направлений при строительстве, поскольку ее применение позволяет многократно повысить эксплуатационные характеристики зданий. Постройка с достаточным количеством утеплителя гораздо меньше промерзает зимой, что снижает затраты на его отопление. Также она менее склонна к перегреву летом, сохраняя внутри комфортную температуру, что экономит ресурс кондиционерного оборудования.

Наличие теплоизоляции дает возможность избежать резких скачков температуры в помещении. Это очень важно, если внутри помещений применяется чувствительный к этому параметру отделочный материал, к примеру, древесина или отдельные виды пластика, в том числе и ПВХ используемый для производства натяжных потолков. Отсутствие существенных колебаний температуры дает возможность убрать благоприятные условия для образования конденсата. Именно применение теплоизоляции исключает появление сырости и развития плесени. Конечно при условии, что влага не образовывается внутри помещения слишком интенсивно от других факторов или накапливается в результате отсутствия гидроизоляции между фундаментом и фасадными стенами.

Сырость на стенах приводит к отслаиванию отделочных материалов. Как следствие наблюдается срывание обоев, а также тяжелой керамической плитки. Переизбыток влаги от отсутствия достаточной теплоизоляции также приводит к расширению изделий из дерева. Как следствие наблюдается коробление напольного покрытия, деформация дверей, от чего они неплотно входят в дверную коробку, и так далее.

Стоит также отметить, что теплоизоляционные материалы помимо своего прямого предназначения обладают звукоизоляционными свойствами. Конечно, их эффективность не столь высока как у специализированных для этой цели покрытий, но вполне достаточная, чтобы уменьшить передачу громких звуков.

Применяемые теплоизоляционные материалы

Существует довольно широкий ассортимент предлагаемых на рынке материалов, которые могут применяться в качестве удачного утеплителя. Среди них оптимальный баланс между стоимостью и эффективностью имеют:

  • Минеральная вата.
  • Пенопласт.
  • Пенополистирол.
  • Пеноплекс.
  • Вспененный пенополиэтилен.
  • Пенополиуретан.

На какие параметры обращать внимание при выборе?

Выбор качественной теплоизоляции зависит от множества параметров. Берутся во внимание и способы монтажа, и стоимость, и другие важные характеристики, на которых стоит остановиться подробнее.

Выбирая самый лучший теплосберегающий материал, необходимо тщательно изучить его основные характеристики:

  1. Теплопроводность. Данный коэффициент равен количеству теплоты, которое за 1 ч пройдет сквозь 1 м изолятора площадью 1 м2, измеряется Вт. Показатель теплопроводности напрямую зависит от степени влажности поверхности, поскольку вода пропускает тепло лучше воздуха, то есть сырой материал со своими задачами не справится.
  2. Пористость. Это доля пор во всеобщем объеме теплоизолятора. Поры могут быть открытыми и закрытыми, крупными и мелкими. При выборе важна равномерность их распределения и вид.
  3. Водопоглощение. Этот параметр показывает количество воды, которое может впитать и удержать в порах теплоизолятор при прямом контакте с влажной средой. Для улучшения этой характеристики материал подвергают гидрофобизации.
  4. Плотность теплоизоляционных материалов. Данный показатель измеряется в кг/м3. Плотность показывает соотношение массы и объема изделия.
  5. Влажность. Показывает объем влаги в утеплителе. Сорбционная влажность указывает на равновесие гигроскопической влажности в условиях разных температурных показателей и относительной влажности воздуха.
  6. Паропроницаемость. Это свойство показывает количество водяного пара, проходящее за один час через 1 м2 утеплителя. Единица измерения пара – мг, а температура воздуха внутри и снаружи принимается за одинаковую.
  7. Устойчивость к био разложению. Теплоизолятор с высокой степенью биостойкости может противостоять воздействию насекомых, микроорганизмов, грибков и в условиях повышенной влажности.
  8. Прочность. Данный параметр свидетельствует о том, какое влияние на изделие окажет транспортировка, хранение, укладка и эксплуатация. Хороший показатель находится в пределах от 0,2 до 2,5 МПа.
  9. Огнеустойчивость. Здесь учитываются все параметры пожарной безопасности: воспламеняемость материала, его горючесть, дымообразующая способность, а также степень токсичности продуктов горения. Так, чем дольше утеплитель противостоит пламени, тем выше его параметр огнестойкости.
  10. Термоустойчивость. Способность материала сопротивляться воздействию температур. Показатель демонстрирует уровень температуры, после достижения которой у материала изменятся характеристики, структура, а также уменьшится его прочность.
  11. Удельная теплоемкость. Измеряется в кДж/(кг х °С) и тем самым демонстрирует количество теплоты, которое аккумулируется слоем теплоизоляции.
  12. Морозоустойчивость. Данный параметр показывает возможность материала переносить изменения температуры, замерзать и оттаивать без потери основных характеристик.

Во время выбора теплоизоляции нужно помнить о целом спектре факторов. Надо учитывать основные параметры утепляемого объекта, условия использования и так далее. Универсальных материалов не существует, так как среди представляемых рынком панелей, сыпучих смесей и жидкостей нужно выбрать наиболее подходящий для конкретного случая тип теплоизоляции.

Теплоизоляционные материалы виды и свойства

Керамзит — один из основных пористых заполнителей, использующихся в строительстве. Это прочный и легкий материал, имеющий плотность 250—800 кг/м. Керамзит выпускается в виде песка, гравия и щебня.

Керамзитовый гравий получают в результате обжига легкоплавких вспучивающихся глин при температуре около 1200°С. В результате образуются гранулы размером 5— 40 мм. Спекшаяся оболочка на поверхности гранулы придает ей прочность. В изломе гранула керамзита имеет структуру застывшей пены.

Керамзитовый песок имеет зерна до 5 мм, его получают при производстве керамзитового гравия в небольших количествах. Кроме того, его можно получить дроблением зерен гравия диаметром свыше 50 мм.

Шлаковая пемза — искусственный пористый заполнитель ячеистой структуры — получают из отходов металлургии — расплавленных доменных шлаков. При быстром охлаждении шлаков с помощью воздуха, воды или пара происходит их вспучивание. Образовавшиеся куски шлаковой пемзы дробят и рассеивают на щебень и песок.

Гранулированный шлак представляет собой мелкозернистый пористый материал в виде крупного песка с зернами размером 5—7 мм.

Вспученный перлит — сыпучий теплоизоляционный материал в виде мелких пористых зерен белого цвета, который получают при кратковременном обжиге гранул из вулканических водосодержащих стеклообразных пород. При температуре 950—1200°С из материала энергично испаряется вода, пар вспучивает и увеличивает частицы перлита в 10—20 раз. Вспученный перлит выпускается в виде зерен диаметром 5 мм или песка и применяется для производства легких бетонов, теплоизоляционных изделий и огнезащитных штукатурок. Для производства бетонов плотность вспученного перлита должна составлять 150—430 кг/м3, для теплоизоляционных засыпок — 50—100 кг/м3. Коэффициент теплопроводности равен 0,04—0,08 Вт/(мˑ°С).

Вспученный вермикулит — сыпучий теплоизоляционный материал в виде чешуйчатых частиц серебристого цвета, получаемый в результате измельчения и обжига водосодержащих слюд. При быстром нагреве вермикулит расщепляется на отдельные пластинки, частично соединенные друг с другом. В результате его объем увеличивается в 15—20 раз. Насыпная плотность вермикулита составляет 75—200 кг/м3.

Вспученный вермикулит используется для изготовления теплоизоляционных плит для утепления облегченных стеновых панелей и легких бетонов в качестве теплоизоляционной засыпки.

Топливные шлаки — пористые кусковые материалы, образующиеся в топке в качестве побочного продукта при сжигании антрацита, каменного и бурого угля и другого твердого топлива.

Аглопорит получают в результате спекания гранул из смеси глинистого сырья с углем. Спекание гранул происходит в результате сгорания угля. Одновременно с выгоранием угля масса вспучивается. Насыпная плотность аглопоритового щебня 300—1000 кг/м.

В настоящее время широкое распространение в строительстве получил керамзитобетон, из которого изготовляют однослойные и трехслойные панели.

Пенобетоны получают из смеси цементного теста с пеной (взбитой из канифольного мыла и животного клея или другого компонента), имеющей устойчивую структуру. После затвердения ячейки пены образуют бетон ячеистой структуры. Из пенобетона выпускают ряд изделий.

Газобетон получают из смеси портландцемента, кремнеземистого компонента и газообразователя (чаще всего алюминиевой пудры). Нередко в эту смесь добавляют воздушную известь или едкий натрий. Полученную смесь заливают в формы, для улучшения структуры подвергают вибрации и обрабатывают преимущественно в автоклавах. Изделия из газобетона формуют большого размера, а затем разрезают на элементы.

Гаэосиликат автоклавного твердения получают на основе известково-кремнеземистого вяжущего, с использованием местных материалов — воздушной извести, песка, золы, металлургических шлаков. В настоящее время дома, стены которых выполнены из газосиликата, получили широкое распространение в сельской местности.

Опилкобетон также используют для строительства домов. В его состав входит известково-цементное тесто, которое смешивают со смесью опилок с песком. Получаемый бетон состава — вяжущее: песок: опилки — (1:1,1:3,2) — (1:1,3:3,3) (по объему) является хорошим теплоизоляционным материалом.

Наиболее высокими теплоизоляционными характеристиками обладают теплоизоляционные пенопласты, применяемые для утепления стен, покрытий и других элементов жилых зданий. Они представляют собой пористые пластмассы, получаемые при вспенивании и термообработке полимеров. Под действием температуры происходит интенсивное выделение газов, вспучивающих полимер. В результате образуется материал с равномерно распределенными в нем порами. В ячеистых пластмассах поры занимают 90—98% объема материала, в то время как на стенки приходится 2—10%. Поэтому пенопласты очень легки. Кроме того, они не загнивают, достаточно гибки и эластичны. Недостаток теплоизоляционных полимеров — их ограниченная теплостойкость и горючесть.

Пенопласты подразделяются на жесткие и эластичные. В строительстве для изоляции ограждающих конструкций применяют жесткие. Пенопласты легко обрабатываются, им легко можно придать любую форму. Кроме того, их можно склеивать между собой и с другими материалами: алюминием, асбестоцементом, древесиной. Для склеивания применяют дифенольные каучуковые, модифицированные каучуковые и эпоксидные клеи.

Пористые пластмассы вырабатывают на основе полистирольных, поливинилхлоридных, полиуретановых, фенольных и карбамидных смол.

Полистирольный пенопласт(пенополистирол) является наиболее распространенным теплоизоляционным материалом, состоящим из спекшихся между собой сферических частиц вспененного полистирола.

Пенополистирол является твердой пеной с замкнутыми порами. Это жесткий материал, стойкий к действию воды, большинству кислот и щелочей. Существенный недостаток пенополистирола — его горючесть. При температуре 80°С он начинает тлеть, поэтому его рекомендуют устраивать в конструкциях, замкнутых со всех сторон огнестойкими материалами. Он используется в качестве утеплителя в слоистых панелях из железобетона, алюминия, асбестоцемента и пластика.

Пенополиуретан изготовляют жестким и эластичным. Полиуретановый поропласт выпускают в виде матов из пористого полиуретана с коэффициентом теплопроводности 0,04 Вт/(м°С) размером 2×1×(0,03—0,06) м, а также твердых и мягких плит плотностью 30—150 кг/м и теплопроводностью 0,022—0,03 Вт/(м’°С). Простота изготовления позволяет получать из этого материала плиты не только в заводских условиях, но и на стройплощадке. При специальных добавках пенополиуретан не поддерживает горения.

Мипора— пористый теплоизоляционный материал белого цвета, изготовляемый на основе мочевиноформаль-дегидного полимера. Мипору выпускают в виде блоков объемом не менее 0,005 м и коэффициентом теплопроводности 0,03 Вт/(м’°С) или плиток толщиной 10 и 20 мм. Мипора не является горючим материалом. При температуре 200°С она только обугливается, но не загорается. Однако она имеет малую прочность на сжатие и представляет собой гигроскопичный материал. Мипору применяют в виде легкого заполнителя каркасных конструкций или пустот, где нет требований к влагоустойчивости.

Пеноизол относится к новым высокоэффективным теплоизоляционным материалам и представляет собой застывшую пену с замкнутыми порами. В зависимости от введенных в него добавок он может быть жестким и эластичным. При использовании в качестве наполнителя тонко молотого керамзитового песка пеноизол становится трудно возгораемым теплоизоляционным материалом. До температуры 350°С он устойчив к воздействию огня, при температуре до 500°С не выделяет токсичных веществ, кроме углекислого газа. Пеноизол имеет хорошую адгезию к кирпичу, бетонным и металлическим поверхностям. Используется для утепления дачных домов, коттеджей, гаражей, ангаров, покрытий бассейнов.

Сотопласты выпускают в виде гофрированных листов бумаги, хлопчатобумажной или стеклянной ткани, пропитанной полимером и антипиреном. Сотопласты представляют собой регулярно повторяющиеся ячейки правильной геометрической формы (в виде пчелиных сот). Его используют в качестве утеплителя в трехслойных панелях из алюминия или асбестоцемента. При заполнении ячеек крошками из мипоры теплоизоляционные характеристики сотопласта повышаются. Применяют сотопласты в виде плит и блоков толщиной 350 мм.

Наиболее рациональными для строительства являются соты из крафт-бумаги, пропитанной фенолформальдегидной смолой с размерами сот 12 и 25 мм. Сотопласты, изготовленные из обычной бумаги и пропитанные мочевино-формальдегидной смолой, хрупки и ломки. При распиловке они сильно крошатся.

Алюминиевая фольга — один из эффективных утеплителей. В то же время она является хорошей воздухоизоляцией и пароизоляцией. В настоящее время промышленность цветной металлургии выпускает фольгу толщиной 0,005—0,2 мм. Алюминиевая фольга имеет блестящую серебристую поверхность с большой отражательной способностью. Большая часть потока лучистой теплоты, падающей на конструкцию, покрытую фольгой, отражается, благодаря этому уменьшаются теплопотери через ограждения и повышается их теплозащита.

Алюминиевая фольга для строительства выпускается в рулонах диаметром 8—43 см, толщиной полотна 0,005— 0,02 мм и шириной 10—460 мм.

Минеральная вата представляет собой теплоизоляционный материал, состоящий из тончайших стекловидных волокон, получаемых путем распыления жидких расплавов шихты из металлургических и топливных шлаков, горных пород типа доломитов, мергелей, базальтов. Длина волокон составляет 2—60 мм. Теплозащитные свойства минеральной ваты обусловлены воздушными порами, заключенными между волокнами. Воздушные поры составляют до 95% общего объема скелета минеральной ваты. Минеральная вата занимает ведущее положение среди неорганических теплоизоляционных материалов благодаря простоте производства, неограниченности сырьевых запасов, малой гигроскопичности и небольшой стоимости.

Недостаток минеральной ваты для тепловой изоляции состоит в том, что при хранении она уплотняется, комкуется, часть волокон ломается и превращается в пыль. Имеющая очень малую прочность, уложенная в конструкциях минеральная вата должна быть защищена от механических воздействий. Поэтому применение в строительстве находят изделия, выпущенные на ее основе, — маты, жесткие и полужесткие плиты.

Маты минераловатные прошивные применяются для теплоизоляции наружных ограждений, а также конструкций, температура которых не менее 400°С. Они имеют при плотности 100—200 кг/м коэффициент теплопроводности 0,052—0,062 Вт/(м’°С). Прошивные маты выпускаются длиной 2 м, шириной 0,9—1,3 м при толщине полотна 0,06 м. В строительстве используются прошивные маты на металлической сетке, на обкладке из стеклохолста, на крахмальном связующем с бумажной и тканевой обкладками.

Маты минераловатные на металлической сетке получают путем прошивки ковра из минеральной ваты на металлической сетке хлопчатобумажными нитками. Маты выпускаются плотностью 100 кг/м с коэффициентом теплопроводности около 0,05 Вт/(м’°С) и размером 3×0,5×0,05 м.

Минераловатные маты на обкладке из стеклохолста изготовляют прошивкой минераловатного ковра стекложгу-том, обработанным в мыльном растворе. Они выпускаются плотностью 125—175 кг/м с коэффициентом теплопроводности 0,044 Вт/(м’°С) размером 2×06×0,04 м и могут быть использованы для изоляции конструкций с температурой до 400°С. Минераловатные маты на крахмальном связующем с бумажной обкладкой выпускают плотностью 100 кг/м с коэффициентом теплопроводности 0,044 Вт/(м’°С) длиной 1—2 м, шириной 0,95—2 м, толщиной от 0,04 до 0,07 м с шагом в 0,01 м.

Теплоизоляционные полужесткие плиты на основе синтетического связующего используют для утепления строительных конструкций и др., в основном в качестве эффективной теплоизоляции покрытий и кровель, в том числе и шиферных. Их использование возможно во всех случаях, где исключается увлажнение и деформация утеплителя во время эксплуатации.

Полужествие плиты состоят из минерального волокна, пропитанного при распылении растворов фенолоспиртов с последующим охлаждением. Плиты марки ПП производят плотностью 100 кг/м с коэффициентом теплопроводности 0,046 Вт/(м’°С) длиной 1 м, шириной 0,5 м, толщиной 0,03; 0,04 и 0,06 м.

Полужесткие плиты на синтетическом вяжущем изготовляют из минераловатного ковра, пропитанного синтетическим связующим (например, карбамидными смолами) с последующей теплообработкой. Их выпускают плотностью 80—100 кг/м с коэффициентом теплопроводности 0,031—0,058 Вт/(м°С).

Жесткие минераловатные плиты на битумном связующем, имеющие коэффициент теплопроводности 0,042 Вт/(м°С), выпускаются размером 1×0,5×0,06 м. Они имеют низкую гигроскопичность, высокую водостойкость и мало подвержены поражению грибками и насекомыми.

Жесткие минераловатные плиты типа ПЭ на синтетическом связующем имеют коэффициент теплопроводности 0,04 Вт/(м’°С) и выпускаются размером 1×0,05×0,06 м. Они обладают повышенной прочностью и могут использоваться для утепления совмещенных кровель и крупнопанельных ограждающих конструкций.

Минераловатные мягкие плиты называют минеральным войлоком. Его выпускают в виде рулонов, упакованных в жесткую тару или водонепроницаемую бумагу. Полотнища минерального войлока выпускают длиной 1; 1,5 и 2 м, шириной 0,45; 0,5 и 1 м, толщиной 0-,05—0,1 м с шагом в 0,01 м. Мягкие минераловатные плиты на битумном связующем используют для утепления строительных конструкций. Серьезным их недостатком является способность войлока уплотняться при незначительных нагрузках, в первую очередь от собственного веса. При этом происходит резкое увеличение плотности, иногда вдвое, что приводит к снижению его теплозащитных качеств.

Строительный войлок получают из низкосортной шерсти животных, к которой добавляют растительные волокна и крахмальный клейстер. Полученные полотнища пропитывают 3%-ным раствором фтористого натрия для защиты от повреждения молью и высушивают. Строительный войлок — хороший утепляющий и звукоизоляционный материал, используется при штукатурке стен и потолков, утепления зазоров между дверными или оконными коробками и стеной.

Стеклянная вата является теплоизоляционным материалом, получаемым вытягиванием расплавленного стекла и состоящим из шелковистых, тонких, гибких стеклянных нитей белого цвета.

Базальтовое супертонкое стекловолокно БСТВ является высокоэффективным теплоизоляционным материалом, обладающим малой плотностью 17—25 кг/м3 и коэффициентом теплопроводности 0,027—0,036 Вт/(м’°С). Из него изготовляют маты, обладающие хорошей теплозащитой и звукоизоляцией.

Пеностекло представляет собой материал, изготовляемый из стекольного боя или кварцевого песка, известняка, соды, т.е. тех же материалов, из которых производят различные виды стекол. Пеностекло образуется в результате спекания порошка стеклобоя с коксом или известняком, которые при высокой температуре выделяют углекислый газ. Благодаря этому в материале образуются крупные поры, стенки которых содержат мельчаший замкнутые микропоры. Двоякий характер пористости позволяет получить пеностекло, имеющее в зависимости от плотности низкий коэффициент теплопроводности 0,058— 0,12 Вт/(м°С). Оно обладает водостойкостью, морозостойкостью, несгораемостью и высокой прочностью. Пеностекло используют для утепления стен, перекрытий, кровель, для изоляции подвалов и холодильников.

Цементный фибролит является хорошим теплоизоляционным материалом, состоящим из смеси тонких древесных стружек длиной 20—50 см (древесной шерсти), портландцемента и воды. Полученную массу формуют, подвергают тепловой обработке и разрезают на отдельные плиты. Древесные стружки, приготовленные из неделовой древесины хвойных пород на специальных станках, выполняют в плитах роль армирующего каркаса. Цементно-фибролитовые плиты выпускают марками по плотности М 300, 350, 400 и 500 с коэффициентом теплопроводности 0,09—0,12 Вт/(м°С), длиной 2—2,4 м и шириной 0,5— 0,55 м и толщиной 5; 7,5 и 10 см.

Арболит изготовляют из смеси портландцемента, дробленой стружки и воды.

Древесно-стружечные плиты изготовляют в результате прессования специально подготовленных стружек с жидкими полимерами. Стружки изготовляют на станках из неделовой древесины, используя отходы фанерного и мебельного производства. Плиты представляют своего рода слоистую конструкцию, средний слой которой состоит из толстых стружек толщиной около 1 мм, а наружные слои из тонких стружек толщиной 0,2 мм. Для обеспечения биостойкости плит в массу из стружек и полимеров вводят антисептик (буру, фтористый натрий и др.), а также антипирены и гидрофобизирующие вещества. Применение гидрофобизаторов позволяет уменьшить набухание плит под действием влаги воздуха.

Плиты снаружи отделывают полимерными пленочными материалами, бумагой, пропитанной смолой, что также защищает их от увлажнения и истирания. Иногда поверхность плит покрывают водостойкими лаками.

Древесно-стружечные плиты выпускают различной плотности от 350 до 1000 кг/м3. Плиты средней (510— 650 кг/ ) и высокой (660—800 кг/м) плотностей используют в качестве конструкционного и отделочного материала, а малой плотности (350 кг/м) — как теплоизоляционный, а также звукоизоляционный материал. Плиты изготовляют длиной 1,8—3,5 м, шириной 1,22—1,75 м, толщиной 0,5—1 см.

Древесно-волокнистые плиты изготовляют из древесины или растительных волокон, получаемых из отходов деревообрабатывающих производств, неделовой древесины, а также костры, камыша, хлопчатника. Наибольшее распространение получили плиты на основе древесных отходов. Древесно-волокнистые плиты выпускают различной плотности — от 250 до 950 кг/м3. Твердые плиты (плотностью больше 850 кг/м) применяют для устройства перегородок, подшивки потолков, настилки полов, изготовления полотен и встроенной мебели.

Изоляционные древесно-волокнистые плиты плотностью до 250 кг/м с коэффициентом теплопроводности 0,07 Вт/(м’°С) используют для тепло- и звукоизоляции помещений. Они имеют длину 1,2—3 м, ширину 1,2— 1,6 м, толщину 0,8—2,5 мм.

Оргалит представляет собой теплоизоляционные древесно-волокнистые плиты из измельченной и химически обработанной древесины. При плотности 150 кг/м3 они имеют коэффициент теплопроводности 0,055 Вт/(м’°С) и используются для теплоизоляции стен, кровель и т.д.

Торфяные изоляционные плиты изготовляют прессованием из малоразложившегося торфа, имеющего волокнистую структуру. Торфяные плиты выпускают плотностью 170 и 250 кг/м с коэффициентом теплопроводности в сухом состоянии 0,06 Вт/(м’°С), длиной 1 м, шириной 0,5 м, толщиной 30 мм и используют для изоляции ограждающих конструкций зданий.

Асбестовый картон получают из асбеста 4-го и 5-го сортов, каолина и крахмала. Его изготовляют на листо-формовочных машинах в виде листов длиной и шириной 0,9—1 м, толщиной 2—10 мм. Коэффициент теплопроводности в сухом состоянии равен 0,157 Вт/(м’°С).

Опилки древесные получают в результате обработки древесины, в мебельном производстве, при распиловке. Опилки плотностью около 150 кг/м используют в качестве утепляющей засыпки, а также для производства арболита, ксилолита, при изготовлении опилкобетона и других строительных материалов.

Пакля представляет собой коротковолокнистый материал, получаемый из отходов пеньки и льна, имеет плотность 160 кг/м, коэффициент теплопроводности 0,047 Вт/(м°С) и применяется для конопатки стен и зазоров оконных коробок.

Гипсовые плиты для перегородок огнестойки, обладают высокими звукоизоляционными качествами, в них легко забиваются гвозди. Плиты применяются для перегородок в помещениях с относительной влажностью не более 70%. Гипсовые перегородки выпускают сплошными и пустотелыми, длиной 0,8—1,5 м, шириной 0,4, толщиной 80, 90 и 100 мм.

Гипсокартонные листы представляют собой отделочный материал, изготовленный из строительного гипса, армированного растительным волокном. Поверхность листов с обеих сторон оклеена картоном. Сухая штукатурка легко режется, не горит, хорошо прибивается гвоздями. Гипсокартонные листы лопаются при изгибе. Как и все изделия на основе гипса они разрушаются под действием влаги.

Сухая штукатурка выпускается листами длиной 2,5— 3,3 м, шириной 1,2 м, толщиной 10—12 мм и применяется для внутренней отделки помещений. Ее приклеивают к поверхности стен и потолков специальными мастиками. Швы между листами заделывают безусадочной шпатлевкой.

Гипсобетонные камни являются местным строительным материалом, их применяют для наружных стен малоэтажных зданий в районах, где нет других эффективных стеновых материалов.

Гипсобетон изготовляют на основе строительного, высокопрочного гипса или гипсоцементно-пуццоланового вяжущего. В его состав вводят пористые заполнители — керамзитовый гравий, топливные шлаки, а также смесь из кварцевого песка и древесных опилок. В зависимости от заполнителя гипсобетон имеет плотность 1000—1600 кг/м. Из него изготовляют сплошные и пустотелые плиты перегородок.

Каждый предмет может служить «мостиком», по которому перейдет тепло от тела более нагретого к телу менее нагретому.

Таким мостиком является, например, чайная ложка, опущенная в стакан с горячим чаем. Металлические предметы очень хорошо проводят тепло. Конец ложки, опущенной в стакан, становится теплым уже через секунду.

Если нужно перемешивать какую-либо горячую смесь, то ручку у мешалки надо сделать из дерева или пластмассы. Эти твердые тела проводят тепло в 1000 раз хуже, чем металлы. Мы говорим «проводят тепло», но с таким же успехом можно было бы сказать «проводят холод». Конечно, свойства тела не изменяются от того, в какую сторону идет по нему поток тепла. В морозные дни мы остерегаемся на улице притрагиваться голой рукой к металлу, но без опаски беремся за деревянную ручку.

К плохим проводникам тепла – их также называют теплоизоляторами – относятся дерево, кирпич, стекло, пластмассы. Из этих материалов делают стены домов, печей и холодильников.

К хорошим проводникам относятся все металлы. Наилучшими проводниками являются медь и серебро – они проводят тепло в два раза лучше, чем железо.

Конечно, «мостиком» для перехода тепла может служить не только твердое тело. Жидкости тоже проводят тепло, но много хуже, чем металлы. По теплопроводности металлы превосходят твердые и жидкие неметаллические тела в сотни раз.

Чтобы показать плохую теплопроводность воды, делают такой опыт. В пробирке с водой закрепляют на дне кусочек льда, а верх пробирки подогревают на газовой горелке – вода начинает кипеть, а лед еще и не думает таять. Если бы пробирка была без воды и из металла, то кусочек льда начал бы таять почти сразу же. Вода проводит тепло примерно в двести раз хуже, чем медь.

Газы проводят тепло в десятки раз хуже, чем конденсированные неметаллические тела. Теплопроводность воздуха в 20000 раз меньше теплопроводности меди.

Плохая теплопроводность газов позволяет взять в руку кусок сухого льда, температура которого ?78 °C, и даже держать на ладони каплю жидкого азота, имеющего температуру ?196 °C. Если не сжимать пальцами эти холодные тела, то «ожога» не будет. Дело заключается в том, что при очень энергичном кипении капля жидкости или кусок твердого тела покрывается «паровой рубашкой» и образовавшийся слой газа служит теплоизолятором.

Сфероидальное состояние жидкости – так называется состояние, при котором капли окутаны паром, – образуется в том случае, если вода попадет на очень горячую сковороду. Капля кипятка, попавшая на ладонь, сильно обжигает руку, хотя разность температур кипятка и человеческого тела меньше разности температур руки и жидкого воздуха. Рука холоднее капли кипятка, тепло уходит от капли, кипение прекращается и паровая рубашка не образуется.

Нетрудно сообразить, что самым лучшим изолятором тепла является вакуум – пустота. В пустоте нет переносчиков тепла, и теплопроводность будет наименьшей.

Значит, если мы хотим создать тепловую защиту, спрятать теплое от холодного или холодное от теплого, то лучше всего соорудить оболочку с двойными стенками и выкачать воздух из пространства между стенками. При этом мы сталкиваемся со следующим любопытным обстоятельством. Если по мере разрежения газа следить за изменением его теплопроводности, то мы обнаружим, что вплоть до того момента, когда давление достигнет нескольких миллиметров ртутного столба, теплопроводность практически не меняется и лишь при переходе к более высокому вакууму наши ожидания оправдываются – теплопроводность резко падает.

Для того чтобы понять это явление, надо попробовать наглядно представить себе, в чем заключается явление переноса тепла в газе.

Передача тепла от нагретого места в холодные происходит путем передачи энергии от одной молекулы к соседней. Понятно, что соударения быстрых молекул с медленными обычно приводят к ускорению медленных молекул и замедлению быстрых. А это и означает, что горячее место станет холоднее, а холодное нагреется.

Как же сказывается уменьшение давления на передаче тепла? Так как уменьшение давления понижает плотность, уменьшится и число встреч быстрых молекул с медленными, при которых происходит передача энергии. Это уменьшало бы теплопроводность. Однако, с другой стороны, уменьшение давления приводит к увеличению длины свободного пробега молекул, которые, таким образом, переносят тепло на большие расстояния, а это способствует увеличению теплопроводности. Расчет показывает, что оба эффекта уравновешиваются, и способность к передаче тепла не меняется некоторое время при откачке воздуха.

Так будет до тех пор, пока вакуум не станет настолько значительным, что длина пробега сравняется с расстоянием между стенками сосуда. Теперь дальнейшее понижение давления уже не может изменить длины пробега молекул, «болтающихся» между стенками, падение плотности не «уравновешивается» и теплопроводность быстро падает пропорционально давлению, доходя до ничтожных значений по достижении высокого вакуума. На применении вакуума и основано устройство термосов. Термосы очень распространены, они применяются не только для хранения горячей и холодной пищи, но и в науке и технике. В этом случае их называют, по имени изобретателя, сосудами Дьюара. В таких сосудах (иногда их просто называют дьюарами) перевозят жидкие воздух, азот, кислород. Позже мы расскажем, каким образом эти газы получают в жидком состоянии*12.

О теплоизоле, как об уникальном, бесшовном и безусадочном утеплителе, а также лучшем звуко и теплоизоляторе при утеплении каркасного дома

О теплоизоле, как об уникальном, бесшовном и безусадочном утеплителе, а также лучшем звуко и теплоизоляторе при утеплении каркасного дома

В чем основная проблема?

В том что человек, приходя в магазин не думает что он покупает. Ему нужен утеплитель. Он видит надпись «утеплитель» — сколько стоит? Желательно подешевле. А о том, что данный утеплитель предназначен только для горизонтальных поверхностей, а не для стен — ему никто не скажет.

КАК правильно утеплить дом? И ЧЕМ его утеплять?

Эти вопросы в первую очередь волнуют человека, решившего построить каркасный дом своими руками, так как технология строительства самого каркаса в принципе давно известна и существенных изменений не претерпела за последнее время. А вот понять какой утеплитель лучше, какая технология утепления ему более понятна — это вопрос.

И я, Анатолий Орлов, вместе со своей командой попытаемся в силу своих способностей и многолетнего опыта строительства каркасных домов помочь вам разобраться в этом непростом вопросе.

В настоящее время существует множество видов утеплителей. По роду сырья они делятся на неорганические и органические. Мы предлагаем к более детальному рассмотрению именно органический утеплительный материал — ТЕПЛОИЗОЛ. ГОСТ 31913-2011​.

Почему Теплоизол?

Все просто: посмотрите на приведенную таблицу и Вам станет все предельно ясно. А еще потому, что мы не просто его производим и утепляем им дома, но, и сами же живем в домах, утепленных теплоизолом.

Плотность
(кг/м³)
Коэффициент теплопроводности
(меньше — «теплее»)
Способность впитывать влагу
(литр/м³)
Коэффицинет паропроницаемости
(больше — лучше)
Стоимость
(руб./м³)
Теплоизол-СПб 6.5 0.032 до 1 л 0.26 2000
Минвата 70 до 18 л 0.30 4000
Эковата 44 до 40 л 0.24 2500
Напыляемый ППУ 20 до 1 л 0.07 5000

Что такое Теплоизол?

Материал придумали в Германии в 1939 году и назвали его Карбамидный пенопласт. Ничего общего с пенопластом, продаваемым сейчас в строительных магазинах, т.е. обычным, в нашем понимании, пенопластом этот материал не имеет. Он изготавливался в виде листов. Так и укладывался.

Сырьем для производства теплоизола служит специально разработанная карбамидная смола, которая так и называется: КАРБОПЕН, КАРБамидный ПЕНопласт. Производят эту смолу на заводе ЗАО «Химсинтез» в г. Чапаевске, Самарская область.

Мы не просто взяли готовую технологию у немцев!

Мы придумали дробить теплоизол и задувать его под давлением, что значительно повышает качество утепления и многие другие показатели. А еще мы модифицировали сам материал нашими добавками при производстве, что позволило свести практически на ноль количество свободного формальдегида, о чем есть официальные документы.

5 требований

Основные пять требований, которым, по моему мнению, должен соответствовать утеплитель, применяемый в каркасном строительстве.

Возьму на себя смелость и составлю, так сказать мою субьективную ИНСТРУКЦИЮ по выбору утеплителя для стены вашего будущего, я надеюсь — теплого, каркасного дома.

  1. На первое место я ставлю способность утеплителя нести собственные вертикальные нагрузки. То есть отсутствие усадки в течение ближайших лет после монтажа. Это основное требование к утеплителю. Если оно не работает, про все другие можно не рассуждать вообще.
  2. На второе место помещаем такое качество, как пожаробезопасность. Нет ничего страшнее пожара. Ничего. Мне пришлось однажды быть свидетелем страшной картины — видеть, как горит каркасный дом, утепленный пенопластом. один человек погиб тогда.
  3. Цена. Этим все сказано.
  4. Теплопроводность. Мы (большинство из нас) живем в северной стране, и хотим поменьше платить за энергию, которую приходится тратить на отопление нашего жилища. Это нормально и правильно.
  5. Пятое почетное место я отдаю такому качеству утеплителя, как звукопоглощение.

В доме должно быть тихо

Этим свой дом в первую очередь отличается от квартиры в многоэтажке, где перед тем, как уснуть, надо дождаться, пока переругаются и успокоятся все соседи сверху, сбоку и т.д. Очень важно правильно утеплить мансарду дома, так как наиболее приемлемым материалом для кровли является металлочерепица. Смотрится отлично, служит долго, но это такой барабан, что «мама не горюй». Спать внутри этого барабана (а спальня традиционно находится именно на втором, мансардном этаже) совершенно невозможно, если утеплитель, выбранный вами, не обладает хорошим, а еще лучше — отличным звукопоглощением.

Возможно, кто-то не согласится с подобной градацией факторов, кто-то вспомнит об экологичности, различных аллергенах, гигроскопичности, о мостиках холода (которые, кстати, в теплоизоле отсутствуют, ибо он является бесшовным утеплителем) и т.д., повторяю — это мое личное мнение, основанное на многолетнем опыте строительства и именно эти пять пунктов я считаю основополагающими при выборе утеплителя для каркасного дома.

Итак. Если вас заинтересовал мой монолог — продолжим далее по теме утепления.

Виды утеплителей

Можно с полной уверенностью сказать, что для владельцев жилых домов проблема утепления находится на самом первом месте. Утеплять приходится крышу, стены, полы.

То есть необходима теплоизоляция, задача которой в первую очередь — снизить потери тепла в доме в зимний период, перегрев конструкций летом, тем самым уменьшить разрушительное воздействие перепадов температур, вызывающих деформацию и разрушение несущих конструкций дома. Все это заставляет производителей выпускать самые разнообразные виды утеплителей. Рассмотрим конкурентов.

Стекловата или минвата — традиционный утеплитель с низкой теплопроводностью (до 0,045 Вт/м³). Теплоизоляция, выполненная из стекловаты, используется и в промышленном и гражданском строительстве. Она негорюча, паропроницаема, обладает хорошими шумопонижающими характеристиками, но главная ее проблема в том,что при низкой плотности материала, а именно такой материал наиболее популярен в связи с невысокой ценой — совершенно не держит собственный вес в вертикальной нагрузке, говоря простыми словами — дает большую усадку внутри стены, что неминуемо приводит к появлению конденсата в утеплителе. Влага еще больше утяжеляет минвату, усадка увеличивается и так далее вплоть до полного исчезновения эффекта утепления.

Вата из целлюлозы, или эковата, является продуктом переработки бумажного вторсырья (в основном — это дробленые газеты) с добавлением древесных волокон и добавок с содержанием боры,выполняющего антисептическую роль а так же антипиренов, добавляющих негорючести этому материалу. Скажу прямо — поджигать эковату сам не пробовал, но она так же очень сильно подвержена усадке в стенах, если только не наносить ее вместе с клеевым облаком. На специальном оборудовании это возможно, но мне лично более импонирует «сухая стройка», не нравится мне мочить утеплитель. Да и потом своими руками это не сделать, надо вызывать бригаду специалистов.

Мое мнение

Использование минваты в горизонтальных плоскостях (полы, перекрытия) — пожалуйста. Вертикальные нагрузки невелики, будет лежать и держать тепло сколько угодно (в зависимости от производителя, потому как некоторые образцы, в моей практике, даже в горизонтальных поверхностях за три года превращались в тонкий коврик). А вот внутрь стены этот утеплитель с малой плотностью я бы закладывать не стал, а купить минвату с высокой плотностью — это стоит совсем других денег.

Самостоятельное и качественное утепление теплоизолом — это факт!

В нашем случае, при утеплении стен теплоизолом, все может сделать самостоятельно и качественно всего 1 человек! К тому же, за использование задувочного агрегата денег мы не берем.
Посмотрите как можно самостоятельно и качественно утеплить дом.

Не стоит забывать и о таком способе утепления, способном создать отличный микроклимат в жилом помещении, как овечья шерсть. Этот утеплитель выпускается в виде рулонов натурального шерстяного полотна. Импортные утеплители содержат антипирены, образцы российского производства 100% натуральные и не содержат никаких добавок, но при этом страдают противопожарные характеристики. Толщина полотна варьируется от 2 до 120 мм. Этот утеплитель не требует дополнительного пароизолирующего слоя, так как способен впитывать и отдавать влагу самостоятельно. Монтаж выполняется строительным степлером. Применяется такая теплоизоляция в утеплении перекрытий и стен в основном в деревянных домах. Проблема та же — большая усадка при использовании в стене. Ну и цена несопоставимо выше теплоизола.

Свойства теплоизола

Несколько слов о причинах отсутствия усадки Теплоизола

Многие наши клиенты, впервые взяв в руки кусочек теплоизола, задавали вполне резонный вопрос: как мол так — нет усадки? Не в вакууме ведь находится ваш утеплитель. Да, не в вакууме. Давайте обратимся к цифрам. Итак, что мы имеем: размеры задуваемой полости — половина листа ОСБ, (м) 2.4×0.57×0.15 (в,ш,г)., плотность утеплителя 7 кг./м.куб. Проведя нехитрые подсчеты, мы получаем обьем задуваемой полости — 0.2 м.куб х 7 кг/м.куб. =1.43 кг —масса утеплителя, помещенного в утепляемую полость. Площадь нижнего горизонта полости: 0.57×0.15= 855 см.кв. Далее 1.43 делим на площадь 855= 0.0016 кг/см.кв. То есть на один квадратный сантиметр основания полости давит утеплитель массой 1,6 грамма, при высоте столба в 2,4 м. Но и это только в теории. Дело в том, что на практике утеплитель находится в подпружиненном состоянии (это хорошо видно на видеоинструкции по утеплению теплоизолом) и сила его сцепления со стенами полости довольно велика. Ради эксперимента можно абсолютно спокойно выбрать утеплитель из нижней части даже открытой полости после задувки и верхняя его часть останется на своем прежнем месте. Благодаря этому свойству общая масса теплоизола равномерно распределяется по всему обьему задуваемой полости, и значение в 1.6 грамма на 1 см. кв. на практике близко к нулю. Поэтому и нет усадки.

Преимущества нашего теплоизола

Что представляет собой Теплоизол внутри стены? Это хлопья плотно сжатого, спружиненного карбамидного пенопласта.

Теплопроводность теплоизола очень низкая — 0,032 ватта на метр на Кельвин. (Подтверждено документально ИЦ СПБ ГАСУ). Сложные, честно сказать цифры, ничего абсолютно не говорящие человеку, закончившему школьную программу лет десять назад. Но они есть, люди старались, вычисляли, зарплату получали за это. Скажу проще: более полезного материала в качестве утеплителя я не знаю. Опять же в соответствии цена — качество — звукоизоляция. Если утеплить стены всего лишь десятисантиметровым слоем этого материала, в доме сразу станет тепло. Это факт, проверенный на практике лично. Благодаря этому отопление дома обойдется вам в несколько раз дешевле.

О паропроницаемости теплоизола

Хорошее воздухопроницание и саморегуляция влажности — один из основных показателей любого утеплителя.

Проще говоря, эти свойства дают возможность стене подпитывать или забирать недостающую или излишнюю влагу из воздуха в помещениях. Паропроницаемость теплоизола значительно выше, чем у других видов газонаполненных пластмасс, т.е. гораздо выше по сравнению с активно раскручиваемым в последнее время напыляемым ППУ — ПеноПолиУретаном (говоря бытовым языком-монтажная пена из баллончика) и в 30 раз выше — по сравнению с ППС — ПеноПолиСтиролом, проще говоря — пенопластом. Оба очень, между прочим, горючи (ресторан «Хромая лошадь»)

Благодаря этому свойству теплоизол в полной мере способствует прохождению водяных паров, содержащихся в воздухе внутри помещения, сквозь стены дома — наружу. Этот эффект называется диффузией стены.

О стойкости к огню

Говоря о пожаробезопасности своих утеплителей многие производители используют различные таблицы с терминами и цифрами, абсолютно непонятными большинству потенциальных клиентов. По этой причине мы не будем повторять их ошибок. В видео Инструкция по утеплению Теплоизолом я просто поджигаю теплоизол зажигалкой, а температура горения газа около 600 градусов по цельсию. Посмотрите, кому интересно, я думаю вопрос будет снят.

Представим себе такую ситуацию: температура окружающей среды такова, что даже металл расплавился. Что же произойдет с теплоизолом? Ничего страшного — он просто тихонько испарится, не выделяя при этом никаких вредных веществ. Что касается дыма, то при открытом огне его выделяется в 10 раз меньше, чем у пенополистирола (пенопласта).

О химической и биологической стойкости

Очень многие теплоизоляторы боятся плесневого грибка, покрываясь во влажной среде черным налетом. Но теплоизол никакой грибок не берет, как, впрочем, и другие микроорганизмы. Мыши и крысы, обожающие прогрызть несколько ходов в утеплителе, также не трогают теплоизол ввиду очень малой плотности материала и, как следствие, — нестабильного состояния прорытых ими в нем ходов. Мыши — существа очень умные и прекрасно понимают по запаху — раз теплоизол — значит смысла нет.

Он абсолютно не реагирует на органические растворители и химически агрессивную среду. Так что, им можно смело утеплять чердаки с подвалами — вашим продуктам ничего не будет угрожать.

О впитывании влаги

Воду теплоизол впитывает хорошо, но и отдает ее без всяких последствий. Этим он в лучшую сторону отличается от минеральной ваты, качество которой после намокания и высыхания ухудшается. А теплоизолу хоть бы что — он, высохнув, так же прекрасно держит тепло. Причем вбирает он в себя не более 1/5 влаги, впоследствии испаряя ее. Поэтому там, где применен данный материал, стены сыреть не будут. Так как теплоизол гигроскопичен, то стены утепленного им помещения получают возможность свободного «дыхания». Это обеспечивает комфортные условия для проживающих в доме людей. Впрочем, и для самих стен это очень полезно — они медленнее разрушаются.

О долговечности

Путем экспериментов, во время которых исследовалась долговечность теплоизола, удалось установить, что утеплитель, помещенный под давлением в сухом виде в конструкции вертикального типа, способен прослужить до 70 лет. Это подтверждают и данные, полученные путем анализа применения аналогичных полимеров в строительстве.

О самом главном

Мы не предлагаем утеплитель в красивых пачках, рулонах, плитах. Ведь покупателю в большинстве случаев не определить, сколько этих упаковок потребуется ему для качественного утепления возводимого строения, какова будет плотность утеплителя, прочность, способность его нести собственные вертикальные нагрузки, т.е. та самая усадка.

Еще один очень важный момент: в процессе задувки под давлением, сразу проявляются косяки строителей, т.е. материал выдувается в неплотно сделанный каркас дома. Если укладывается любой другой утеплитель, такой проверки нет. И в результате зимой дует изо всех углов.

О гарантии

Пример из жизни. Есть у меня знакомый, три года назад утеплил свой каркасный дом минеральной ватой, купленной в магазине по соседству. Утеплял как мог, старался, для себя ведь. От моих советов отмахивался, мол я для себя своими руками утеплю как надо, без халтуры.

Первый год — тепло, радость сплошная. Второй год-все нормально. На третью зиму в доме гуляет ветер, буквально. Стены обшиты вагонкой. Разобрал он часть стены — и. ждало его сплошное мокрое разочарование.

Пошел сосед через дорогу в магазин, где утеплитель был приобретен, поднял скандал, а ему в ответ лишь покрутили у виска пальцем. Мол решение сам принимал. А денежки-то у них остались. А у соседа — сплошные проблемы.

История эта невыдуманная, реальная. Пришлось вагонку снимать поэтапно, одну стенку, потом вторую и тд., Благо морозов больших не было. Зашили осб-плитами, задули туда теплоизол. Гарантия — 25 лет.

Мораль сей басни такова

Принимая решение, думайте о гарантии на материал, который вы покупаете, уточняйте у продавцов (хотя в большинстве случаев они, к сожалению, некомпетентны) сколько лет и как качественно он будет работать у вас в стене.

Если вас заинтересовал наш уникальный утеплитель, если есть вопросы по утеплению — звоните, пишите, обязательно отвечу.

Искренне ваш, без «камня за пазухой» Анатолий Орлов.

Презентация была опубликована 6 лет назад пользователемdmd-vsosh3-t.umi.ru

Похожие презентации

Презентация на тему: » Что такое теплопроводность?. ТЕПЛОПРОВОДНОСТЬ — перенос энергии от более нагретых участков тела к менее нагретым в результате теплового движения и взаимодействия.» — Транскрипт:

1 Что такое теплопроводность?

2 ТЕПЛОПРОВОДНОСТЬ — перенос энергии от более нагретых участков тела к менее нагретым в результате теплового движения и взаимодействия микрочастиц (атомов, молекул, ионов и т.п.). Приводит к выравниванию температуры тела. Не сопровождается переносом вещества! Этот вид передачи внутренней энергии характерен как для твердых веществ, так и для жидкостей, газов. Теплопроводность различных веществ разная. Существует зависимость теплопроводности от плотности вещества.

3 Процесс передачи теплоты от более нагретых тел менее нагретым называется теплопередачей.

4 Попробуем опустить в горячую воду, налитую в небольшой сосуд, кусочек льда. Через некоторое время температура льда начнет повышаться и он растает, а температура окружающей воды понизится. Если опустить горячую ложку в холодную воду, то окажется, что температура ложки начнет понижаться, температура воды повышаться и через некоторое время температура воды и ложки станет одинаковой А теперь опустим в горячую воду деревянную палочку. Можно сразу заметить, что деревянная палочка нагревается значительно медленнее металлической ложки.Отсюда можно сделать вывод, что тела, сделанные из разных веществ, обладают разной теплопроводностью.

5 Теплопроводность различных веществ разная. Металлы обладают самой высокой теплопроводностью, причем у разных металлов теплопроводность отличается. Жидкости обладают меньшей теплопроводностью, чем твердые тела, а газы меньшей, чем жидкости. При нагревании верхнего конца закрытой пальцем пробирки с воздухом внутри можно не бояться обжечь палец, т.к. теплопроводность газов очень низкая.

6 Вещества с низкой теплопроводностью используют в качестве теплоизоляторов. Теплоизоляторы это вещества, плохо проводящие тепло. Воздух является хорошим теплоизолятором, поэтому оконные рамы делают с двойными стеклами, для того чтобы между ними был слой воздуха. Хорошими теплоизолирующими свойствами обладают дерево и различные пластмассы. Можно обратить внимание на то, что ручки чайников делают именно из этих материалов, для того чтобы не обжечь руки, когда чайник горячий.

7 Для создания теплой одежды широко используют вещества, плохо проводящие тепло, такие как войлок, мех, вата, перья и пух различных птиц. Такая одежда помогает сохранять тепло тела. Войлочные и ватные рукавицы используют при работе с горячими предметами, например для того, чтобы снимать с плиты горячие кастрюли. Все металлы, стекло, вода хорошо проводят тепло и являются плохими теплоизоляторами. Тряпкой, смоченной в воде, ни в коем случае нельзя снимать горячие предметы. Вода, содержащаяся в тряпке, мгновенно нагреется и обожжет руку. Знания о способности разных материалов по- разному передавать тепло помогут в походе. Например, чтобы не обжечься о горячую металлическую кружку, ее ручку можно обмотать изоляционной лентой, которая является хорошим теплоизолятором. Для того чтобы снять с костра горячий котелок, можно воспользоваться войлочными, ватными или брезентовыми рукавицами.

8 На кухне, поднимая горячую посуду, чтобы не обжечься, можно использовать только сухую тряпку. Теплопроводность воздуха намного меньше, чем у воды! А ткань структура очень рыхлая, и все промежутки между волокнами заполнены у сухой тряпки воздухом, а у влажной — водой

9 Куропатки, утки и другие птицы зимой не мерзнут потому, что температура лап у них может отличаться от температуры тела более чем на 30 градусов. Низкая температура лап сильно понижает теплоотдачу. Таковы защитные силы организма! ЕСЛИ положить на лежащие рядом на столе кусок пенопласта (или дерева) и зеркало ладони, то ощущения от этих предметов будут разными: пенопласт покажется теплее, а зеркало — холоднее. Почему? Ведь температура окружающего воздуха одинаковая! Стекло — хороший проводник тепла (обладает высокой теплопроводностью), и сразу начнет «отбирать» от руки тепло. Рука будет ощущать холод! Пенопласт хуже проводит тепло. Он тоже будет, нагреваясь, «отбирать» тепло у руки, но медленнее, поэтому и покажется теплее.

Теплопроводность — способность материала передавать теплоту. Для количественного определения этой характеристики используется коэффициент теплопроводности, который равен количеству тепла, проходящему за 1 час через образец материала толщиной 1 м и площадью 1 м 2 при разности температур на противоположных поверхностях 1°С. Теплопроводность выражается в Вт/(м К) или Вт/(м градус Цельсия).

Теплопроводность зависит от средней плотности и химико-минерального состава материала, его структуры, пористости, влажности и средней температуры материала. Чем больше пористость (меньше средняя плотность), тем ниже теплопроводность материала. С увеличением влажности материала теплопроводность резко увеличивается, т.е. снижаются показатели теплоизоляционных свойств материала.

Теплопроводность некоторых материалов, Вт/(м*k)

Хорошие проводники тепла

Серебро 407
Медь 384
Золото 308
Алюминий 209
Латунь 111
Платина 70
Олово 65
Серый чугун 50
Бронза 47-58
Сталь 47
Свинец 35

Плохие проводники тепла

Теплоизоляторы

Воздух – это смесь газов. Окружает планету, образует атмосферу и содержится во всём, что существует. Он есть в воде, земле, растениях, животных, горах, камнях и необходим для жизни живых организмов. Физические, химические и гигиенические свойства формируют климат в регионах частей Земли, влияют на жизнедеятельность растений и животных.

Основные свойства воздуха

  • Прозрачен.
  • Не имеет цвета и запаха.
  • Не имеет формы, занимает всё пространство.
  • Упругость.
  • Проводит звук и солнечные лучи.
  • Сохраняет тепло.
  • При нагревании расширяется, при охлаждении сжимается.
  • Подвижен.

Физические свойства

  1. Температурные. Регулирует теплообмен.
  2. Влажность. Определяет насыщение газов кислородом, содержание водяного пара.
  3. Атмосферное давление. Масса атмосферного столба, который давит на поверхность планеты и на всё, что расположено внутри воздушного океана.
  4. Подвижность. Формирует ветра и обновление газового состава.
  5. Солнечная радиация. Определяет процент радиоактивных веществ и газов, содержащихся в атмосфере. Основной показатель формирования климата планеты.
  6. Электрическая активность. Количество электрических зарядов, содержащихся в воздушном пространстве.

Химический состав воздуха

Воздушная оболочка Земли формируется из смеси газов:

  • Азот. Основной компонент атмосферы. Не участвует в дыхании, не поддерживает горение. Обеспечивает жизнедеятельность водорослей и некоторых растений.
  • Кислород. Жизненно необходимый элемент. Является необходимым в формировании биологических процессов организмов животных, растений. Служит окислителем и основным компонентом горения веществ.
  • Углекислый газ. Поглощается деревьями и преобразуется в кислород.

В небольших количествах атмосфера содержит озон, водород, неон, другие газы. По количеству содержания вредных примесей определяют чистоту воздуха. Подробнее – в статье о составе воздуха.

Теплопроводность воздуха

Окружающий воздух практически не проводит тепло. Особенность задерживать тепловой заряд широко используется человеком и животными. Ограничивая подвижность потока, воздушная прослойка задерживает теплообмен организмов, создаёт комфортный микроклимат.

При нагревании с воздухом происходит расширение и он поднимается, становится разреженным. Изменяется его химический состав и влажность. Водяной пар распадается на отдельные газы, становится более летучим.

При охлаждении воздух сжимается и он опускается. Незначительное содержание твёрдых частиц в газах окисляется и насыщается водяными парами. Воздух становится тяжелее и плотнее.

Применение и использование свойств воздуха

Воздушную оболочку планеты активно используют животные и птицы. Способность задерживать тепло помогает животным выживать и регулировать тепловые процессы организма. Шерсть, обитателей северных широт, имеет полую структуру.

Особое строение пера и движение воздушных масс птицы используют для полётов и планирования над землёй.

Наполненный атмосферой пузырь, удерживает рыб в толще воды и способствует перемещению из глубин водоёмов к поверхности.

Подвижность используется растениями для опыления и распространения семян на большие площади.

Человек использует свойства атмосферы в широких спектрах своей жизнедеятельности:

  • Теплопроводность обеспечивает обогрев и терморегуляцию организма.
  • Способность тёплых воздушных потоков подниматься используют в полётах.
  • Упругость и сжатие применяют во всех промышленных системах. Его закачивают в автомобильные шины. Нагнетая воздушное давление, работают пневматические инструменты, оружие.
  • Кислород участвует в процессах горения. Все двигатели внутреннего сгорания потребляют большие объёмы кислорода и его соединений.

Более подробная информация об использовании и значении воздуха живыми организмами .

Сравнение свойств воды и воздуха

Основную роль воздушный океан играет в дыхании всех живых существ Земли. Содержание его в воде используется всеми подводными животными и растениями.

Вода и воздух имеют похожие параметры. Она так же прозрачна и безвкусна, так же реагирует на нагрев и охлаждение. Основным отличием воды является способность растворять вещества и её большая плотность. Вода имеет большую массу и теплопроводность, проводит заряды электричества. Способность извлекать необходимые компоненты из воды, без применения специального оборудования, человеку и млекопитающим не под силу.

Как воздух проводит тепло?

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *