Боковое давление грунта

Содержание

Что нужно знать о боковом давлении грунта на стены подвала

В процессе строительства дома на ранних этапах одной из главных проблем может оказаться невозможность преодоления бокового давления грунта на стены подвала, если конструкция предполагает наличие этого помещения. Игнорировать этот вопрос нельзя ни в коем случае, так как в будущем это может повлечь за собой не только деформацию здания, но и полное его разрушение. В особенности в зоне повышенного риска находятся все сооружения, предполагающие наличие более 1 этажа.

Чтобы справиться с возникшими сложностями, строители научились использовать специальную технологию и материалы, способные противостоять большим нагрузкам на стены. Когда происходит закладка фундамента, самым важным моментом можно назвать правильность расчётов сопротивления. Также стоит помнить, что чем глубже фундамент, тем сильнее будет давление на него.

Зависимость выбора метода возведения фундаментных стен от величины давления грунта

Чтобы повлиять на достоверность прочностных характеристик фундамента, перед возведением стен стоит тщательно исследовать почву в условиях трехосного сжатия. Это значит, что мастеру необходимо будет ознакомиться с методиками полевых определений информации о фильтрации, прочности и деформируемости. На основании полученных данных можно задумываться о том, какой метод возведения фундаментной стены окажется наиболее приемлемым и безопасным.

Чтобы избавиться от давления существует несколько техник для обустройства здания

Расчет давления грунта на стену подвала

В данном случае расчётная схема может предоставляться в виде балки с шарнирным опиранием в уровне перекрытий над подвальным помещением и защемлением на уровне подошвы фундамента. Говоря от треугольной нагрузке от бокового давления земли, она будет действовать не по всей площади балки и в дальнейшем создаст проблемы при заделке. Чтобы решить эту статистически неопределённую задачу, специалисты могут использовать метод из строительной механики.

Расчет толщины стен

Будущая толщина стены фундамента напрямую зависит от подобранных строительных материалов, а также глубины сооружения под землей. Если данная конструкция будет использоваться как жилая зона, высота должна быть не менее 2,5 м. Если здесь будут расположены технические помещения, достаточно использовать показатели до 2 м. Также не стоит забывать о том, что придется предусмотреть запасы на стяжку пола, а также отделочные работы.

В данном видео вы подробнее узнаете о расчётах стен подвала:

Определение толщины стен всегда производят с учетом уровня места расположения грунтовых вод. Если они протекают на большом расстоянии от будущего основания, специалисты рекомендуют придерживаться таких правил:

  • нижнюю стенку можно выполнить, как не силовую, которая будет выступать на 10-15 сантиметров за строительный контур;
  • если глубина размещения находится на отметке 1,5-2,2 метра, толщина стены подвала может составить от 25 до 40 сантиметров.

Технические характеристики материалов при строительстве стен фундамента

В зависимости от ситуации, при строительстве стены фундамента могут использоваться самые разные материалы. Каждый из них обязательно должен обладать надежностью и долговечностью. Независимо от того, какие показатели были получены после расчётов давления, лучше отдавать предпочтение самому надежному варианту. Для этих целей могут использоваться:

  • каменные породы;
  • бетон;
  • железобетонные блоки;
  • кирпичи.

Бетон

Бетон очень часто используется как основной строительный материал не только для сооружения стен для фундамента, но и для перекрытий или других конструкции для дома. Он может выполнять заполняющую, изоляционную или отделочную функцию. Основное преимущество этого материала — надежность. В процессе строительства специалист может добиться необходимой прочности, что позволит сделать сооружение максимально долговечным.

Это интересно: как сделать подвал из бетона своими руками.

Также не стоит забывать, что бетон не стоит больших денег, поэтому у хозяина дома будет возможность сэкономить. Именно поэтому это практически самый распространённый вариант для сооружения фундаментных стен.

Единственный риск, который можно отметить в этом случае, это возможное обрушение грунта в ходе работ, после чего он может перемешаться с бетоном, что повлияет на снижение прочности состава.

Бетон наиболее распространенный материал для строительства

Кирпич

Кирпич можно назвать одним из тех вариантов, который используется для сооружения стен для фундамента уже на протяжении долгого времени. Его использовали ещё задолго до того, как популярность начал набирать бетон. Кирпичи широко применялись благодаря лёгкости монтажа, при этом они очень прочные и надёжные.

Также не стоит забывать о том, что именно такие элементы позволяют выполнять не только стандартную кладку, но и различные узоры, которые подчеркнут оригинальность дизайна сооружения в целом. Но после того как будет выполнена кладка, не стоит забывать о том, что её необходимо защитить от сырости и влаги. Для этого можно использовать сразу несколько способов. Основными технологиями для этой разновидности работ можно считать следующее:

  • штукатурка цоколя;
  • окраска;
  • оклеечная технология.

Если выполняется окрасочная гидроизоляция, необходимо использовать различные мастики, для которых основой выступают синтетические смолы или битум с наполнителем. Перед тем как приступить к работе, поверхность необходимо тщательно очистить и выровнять, чтобы на ней не было каких-либо шероховатостей, зазоров и выступов. Чтобы добиться идеального результата, специалисты обрабатывают кладку грунтовкой.

После того, как она полностью просохнет, можно наносить подготовленный материал. При оклеечной гидроизоляции работы выполняются с помощью следующих материалов:

  • изол;
  • гидроизол;
  • бризол;
  • рубероид.

Один из них наносится на изолированную поверхность с помощью битумных мастик. Говоря об одной из самых эффективных штукатурных гидроизоляций, можно выделить цементно-песчаный раствор. В эту смесь для усиления эффекта добавляют пенетрирующие материалы. Сам цемент не должен быть марки слабее М100.

Камни

Как и остальные варианты стен для фундамента, камень отличается своими недостатками и преимуществами. Этот вариант наиболее приемлем в тех случаях, когда хозяин дома собирается соорудить высокую несущую конструкцию. Способ наиболее выгоден за счёт следующих положительных сторон:

  • камень является экологически чистым материалом;
  • такие решения всегда имеют привлекательный вид, который в дальнейшем не потребует дополнительной отделки;
  • стены из камня окажутся одними из самых прочных, это обеспечит долговечность конструкции;
  • этот материал не нуждается в защите от влаги, так как от природы является водостойким.

Несмотря на вышесказанное, камень имеет и некоторые недостатки. Одни из самых существенных — высокая цена, а также большие временные затраты. Если решено использовать именно этот материал, все необходимые расчёты и возведение конструкции из бута должны производиться только высококвалифицированными специалистами. Только в этом случае использование камня будет оправданным, так как если не учесть все, даже самые малейшие, нюансы, есть вероятность того, что со временем конструкция обрушится.

Камень имеет ряд преимуществ

Ещё одной положительной особенностью этого материала можно считать его гибкость при комбинировании с другими материалами. Если бюджет хозяина дома ограничен, то, чтобы удешевить сооружение и при этом не повлиять на его качество, для основы, которая будет находиться в земле, можно использовать бут, а в верхней части – кирпич. Но при этом такую технологию не стоит применять самостоятельно, так как здесь существует множество тонкостей, о которых знают только опытные специалисты.

Железобетонные блоки

Если для сооружения стен фундамента планируется использовать железобетонные блоки, такая конструкция окажется самой прочной и долговечной из всех вышеперечисленных. Это объясняется тем, что для изготовления таких элементов используется арматура и армирующие сетки, обеспечивающее прочное сцепление.

Железобетон можно назвать единственным материалом, который способен конкурировать с камнем и бетоном. В процессе выполнения монтажа стоит быть необычайно аккуратным, так как большой вес блоков при неаккуратном отношении к работе может привести к самым разным последствиям.

7.2. ОПРЕДЕЛЕНИЕ АКТИВНОГО И ПАССИВНОГО ДАВЛЕНИЯ ГРУНТА НА СТЕНЫ

7.2.1. Общие положения

Давление грунта на стены зависит от их конструктивных особенностей (наклона и жесткости стены, наличия разгружающих элементов и т.д.), от свойств грунта, взаимодействующего со стеной, от величины и направления перемещений, поворота и прогиба стены .

Активное давление грунта σa реализуется при смещении стены от грунта и соответствует минимальному значению давления. Пассивное давление грунта σр реализуется при смещении стены на грунт и соответствует максимальному значению давления. При отсутствии перемещений стены реализуется давление покоя σ0. Изменение давления грунта в зависимости от перемещения стены и представлено на рис. 7.6.

Рис. 7.6. Изменение давления грунта на подпорную стенку в зависимости от ее перемещения

7.2.2. Характеристики грунта, используемые при определении давления грунта

На стенки действует боковое давление грунта нарушенного сложения. Характеристики этого грунта выражаются через соответствующие характеристики грунта ненарушенного сложения следующими соотношениями :

γ’I = 0,95γI; φ’I = 0,9φI;

c’I = 0,5cI (но не более 7 кПа);

γ’II = 0,95γII; φ’II = 0,9φII;

c’II = 0,5cII (но не более 10 кПа);

где γI, φI, cI, γII, φII, cII — соответственно удельный вес, угол внутреннего трения и удельное сцепление грунтов ненарушенного сложения для расчетов по первой и второй группам предельных состояний, определяемые в соответствии со СНиП 2.02.01-83.

7.2.3. Активное давление грунта

А. НЕСВЯЗНЫЙ ГРУНТ

В случае свободной от нагрузки наклонной поверхности засыпки и наклонной тыловой грани стены горизонтальная σah и вертикальная σav составляющие активного давления грунта на глубине z (рис. 7.7) определяются по формулам :

σah = γzλa;(7.1) σav = σahtg(α + δ),(7.2)

где γ — расчетное значение удельного веса грунта; α — угол наклона тыловой грани стены к вертикали, принимаемый со знаком плюс при отклонении от вертикали в сторону стены; δ — угол трения грунта на контакте со стенкой, принимаемый для стен с повышенной шероховатостью равным φ, для мелкозернистых водонасыщенных песков и при наличии на поверхности вибрационных нагрузок равным 0, в остальных случаях равным 0,5φ (здесь φ — расчетное значение угла внутреннего трения грунта); λa — коэффициент активного давления грунта:

;(7.3)

здесь ρ — угол наклона поверхности грунта к горизонту, принимаемый со знаком плюс при отклонении этой поверхности от горизонтали вверх: |ρ| ≤ φ.

В частном случае для гладкой вертикальной тыловой грани и горизонтальной поверхности грунта коэффициент активного давления вычисляется по формуле

λa = tg2(45° – φ/2).(7.4)

Равнодействующие горизонтального Еah и вертикального Eav давлений грунта для стен высотой Н определяются как площади соответствующих треугольных эпюр давлений (рис. 7.7) по формулам:

Eah = σahH/2;(7.5) Eav = σavH/2.(7.6)

Б. СВЯЗНЫЙ ГРУНТ

Горизонтальная σ’ah и вертикальная σ’av составляющие активного давления связного грунта на глубине z (см. рис. 7.7) определяются по формулам:

σ’ah = σah – σch;(7.7) σ’av = σ’ahtg(α + δ),(7.8)

где σch — давление связности:

σch = cK,(7.9)

здесь с — удельное сцепление грунта;

.(7.10) Рис. 7.7. К определению активного давления грунта на стенку а — несвязного; б — связного

Если значение K, вычисленное по формуле (7.10), меньше нуля, в расчетах принимается K = 0.

В частном случае при горизонтальной поверхности засыпки (ρ = 0) и вертикальной задней грани (α = 0) (или расчетной плоскости) горизонтальная составляющая активного давления грунта на глубине z определяется по формуле

σ’ah = γzλa + c(λa – 1)/tgφ.

Равнодействующая горизонтального Е’ah и вертикального E’av давлений грунта для стен высотой Н (см. рис. 7.7) определяется по формулам;

E’ah = σ’ah(H – hc)/2;(7.11) E’av = σ’av(H – hc)/2;(7.12)

где

.(7.13)

В. ДАВЛЕНИЕ НА СТЕНЫ ОТ НАГРУЗКИ НА ПОВЕРХНОСТИ ЗАСЫПКИ

Сплошная равномерно распределенная нагрузка q (рис. 7.8, а). Горизонтальная σqh и вертикальная σqv составляющие активного давления грунта от этой нагрузки на глубине z для связных и несвязных грунтов определяются по формулам:

σqh = qλa;(7.14) σqv = σqhtg(α + δ).(7.15)

Г. ДАВЛЕНИЕ ГРУНТА НА УГОЛКОВЫЕ ПОДПОРНЫЕ СТЕНЫ

Для уголковых подпорных стен активное давление грунта на условную поверхность определяется по двум возможным вариантам:

  • – для длинной опорной плиты в предположении образования симметричной призмы обрушения (рис. 7.9, а, условная поверхность ab);
  • – для короткой опорной плиты — несимметричной призмы обрушения (рис. 7.9, б, условная поверхность abc).

Рис. 7.8. К определению давления грунта от нагрузки на поверхности засыпки Рис. 7.9. К определению активного давления грунта на угловые подпорные стены а — при симметричной призме обрушения; б — при несимметричной призме обрушения

В обоих случаях вес грунта, заключенного между условной поверхностью и тыловой поверхностью стены, добавляется к весу стены в расчетах на устойчивость, которые выполняются так же, как и для массивных стен: α = Θ = 45°— φ/2; δ = φ.

7.2.4. Пассивное давление грунта

При горизонтальной поверхности грунта и равномерно распределенной нагрузке на поверхности горизонтальная σph и вертикальная σpv составляющие пассивного давления на глубине z от поверхности определяются по формулам:

6.2.3. Расчет стен подвалов

Наружные стены подвалов рассчитываются на нагрузки, передаваемые наземными конструкциями, и на давление грунта, определяемое по рекомендациям гл. 7.

Полезная нагрузка на прилегающей к подвалу территории по возможности заменяется эквивалентной равномерно распределенной. При отсутствии данных об интенсивности полезной нагрузки она может быть принята равной 10 кПа.

Усилия в стенах подвала, опертых на перекрытие, определяются как для балочных плит с защемлением на уровне сопряжения с фундаментом, так и с шарнирной опорой в уровне опирания на перекрытие с учетом возможного перераспределения усилий от поворота (крена) фундамента или смещения стен при загружении территории, прилегающей к подвалу.

Изгибающие моменты и поперечные силы в стенах подвалов определяются по формулам:

при перекрытии подвала, расположенном ниже уровня планировки (рис. 6.17)

Minf = m2 (v1σsup + v2σinf) lH2; (6.64) ; (6.65) ; (6.66) ; (6.67)

расстояние от верхней опоры до максимального пролетного момента

; (6.68)

при перекрытии подвала, расположенном выше уровня планировки,

(6.69) ; (6.70) ; (6.71) ; (6.72) (6.73)

где σsup и σinf — горизонтальные давления на верхнюю и нижнюю части стены подвала от собтвенного веса грунта и от равномерно распределенной нагрузки на поверхности грунта:

σsup = σsupah + σqh – σch; (6.74) σinf = σinfah + σqh – σch (6.75)

(здесь σsupah, σinfah, σqh и σch — определяются по указаниям гл. 7; индексы «sup» и «inf» относятся соответственно к верхней и нижней частям стены); Мinf — изгибающий момент на уровне нижней опоры; Мх — изгибающий момент в сечении стены, расположенном на расстоянии X от верхней опоры; Qsup — поперечная сила на уровне верхней опоры; Qinf — поперечная сила на уровне нижней опоры (на уровне сопряжения стены с фундаментом); l — размер сечения стены (в продольном направлении); H — расстояние от низа перекрытия до верха фундамента; H1 — толщина слоя грунта, вводимая в расчет при определении бокового давления грунта (см. рис. 6.17); m1 — коэффициент, учитывающий поворот фундамента; m2 — коэффициент, учитывающий податливость верхней опоры; k1 и k2 — коэффициенты, учитывающие изменение жесткости стеновых панелей (для стен с переменной толщиной по высоте), принимаются по табл. 6.3 в зависимости от отношения толщины стеновой панели в верхней части σsup к толщине ее в нижней части σinf на уровне сопряжения с фундаментом; n = H1/H.

Рис. 6.17. К определению расчетных усилий в стенах подвалов а — при перекрытии выше уровни планировки; б — при перекрытии ниже уровня планировки

ТАБЛИЦА 6.3. ЗНАЧЕНИЯ КОЭФФИЦИЕНТА ЖЕСТКОСТИ

δsup/δinf k1 k2
1 0,0583 0,0667
0,7 0,0683 0,0747
0,6 0,0753 0,0787
0,5 0,0813 0,0837
0,4 0,0883 0,0907
0,3 0,0993 0,0977

Коэффициент m1, учитывающий поворот ленточного фундамента, принимается при наличии конструкций, препятствующих повороту фундамента (перекрестных лент или сплошной фундаментной плиты), равным 0,8; в остальных случаях m1 определяется по формуле

, (6.76)

где Еmw —модуль упругости материала стены; Е — модуль деформации грунта основания; b — ширина подошвы фундамента; δinf — толщина стены в сечении по обрезу фундамента; hf — высота фундамента.

Если значение m1 по формуле (6.76) окажется более 0,8, то принимается m1 = 0,8.

Коэффициент m2 в случае, когда перекрытие подвала расположено ниже уровня планировки, принимается:

– при невозможности горизонтального смещения верхней опоры стены (опирание перекрытия на массивные фундаменты, поперечные стены и т.п.)

m2 = m1 + 0,2; (6.77)

– при возможности упругого смещения верхней опоры стены

m2 = 1,2(m1 + 0,2). (6.78)

Если перекрытие подвала расположено выше уровня планировки,

m2 = 1,4(m1 + 0,2). (6.79)

Пример 6.3. Требуется определить усилия в массивной стене подвала. Исходные данные: стена подвала — из бетонных блоков шириной 50 см; класс бетона В15; высота подвала H0 = 3,3 м (рис. 6.18); ширина подошвы фундаментной плиты 1,4 м, высота 0,35 м; глубина заложения подошвы фундамента от пола подвала 0,5 м; расчетная высота стены H = 3,45 м; нормативная нагрузка от лежащих выше конструкций здания на 1 м стены подвала 200 кН; временная нормативная равномерно распределенная нагрузка на поверхности грунта qн = 10 кПа; грунт засыпки — суглинок с характеристиками: γ´I = 19,5 кН/м3; γ´II = 19,5 кН/м3; φ´I = 22°; φ´II = 24°; с´I = 5 кПа; c´II = 7,5 кПа; E = 14 000 кПа. Расчет производится на 1 м длины стены подвала. Принятая ширина подошвы фундаментной плиты проверена расчетом основания но первой и второй группам предельных состояний.

Рис. 6.18. К примеру 6.3

Решение. Определяем момент Minf и поперечную силу Qinf на уровне верха фундаментной плиты. Находим:

кПа,

кПа,

где γf — коэффициент надежности по нагрузке, равный 1,2;

кПа.

Вычисляем σsup и σinf по формулам (6.74) и (6.75):

Таблицы допустимого давления на грунт и несущей способности грунта.

При разработке проекта для фундамента дома учитываются все факторы, в том числе и особенности грунтов. Для расчета общей допустимой нагрузки дома на грунт фундамента вы можете использовать формулу: A = Vдома (кг) / Sфунд (см2).

Таблица допустимого давления на грунт, кг/см 2 .

Грунт

Глубина заложения фундамента

1 – 1,5

2 – 2,5

Щебень, галька с песчаным заполнением

4,5

6,0

Дресва, гравийный грунт из горных пород

4,0

5,0

Песок гравелистый и крупный

3,2

5,5

Глина твердая

3,0

4,2

Щебень, галька с илистым заполнением

2,8

4,2

Песок средней крупности

2,5

4,5

Песок мелкий маловлажный

2,0

3,5

Суглинок

1,7

2,0

Глина пластичная

1,6

2,0

Супесь

1,5

2,5

Песок мелкий очень влажный

1,5

2,5

Иногда влажность грунтов может изменяться в большую сторону, в таких случаях несущая способность почвы становится меньше. Рассчитать влажность грунта можно самостоятельно. Для этого необходимо выкопать скважину или яму, и в том случае если через какой либо промежуток времени в ней появляется вода – грунт влажный, а если ее нет, то он сухой. Ниже мы рассмотрим плотность и несущей способности различных грунтов. Для расчета фундамента вы можете воспользоваться калькулятором фундамента.

Таблица плотности и несущей способности различных грунтов.

Тип грунта

Плотный грунт

Грунт средней плотности

Песок крупный

Песок среднего размера

Супесь (сухая)

Супесь влажная (пластичная)

Мелкий песок (маловлажный)

Мелкий песок (влажный)

Глина (сухая)

Глина влажная (пластичная)

Суглинок (сухой)

Суглинок влажный (пластичный)

При разработке проекта дома для примерного расчета фундамента, как правило, несущая способность принимается 2 кг/см2.

Следует отметить, что при разработке, грунт разрыхляется и увеличивается в объеме. Объем насыпи, как правило, больше объема выемки из которой грунт изымается. Грунт в насыпи будет постепенно уплотняться, это происходит под действием собственного веса или механического воздействия, поэтому значения первоначального коэффициента увеличения объема (разрыхления) и процента остаточного разрыхления после осадки будет между собой различаться. Грунты в зависимости от трудности и способа их разработки делятся на категории.

Таблица категорий и способов разработки почвы.

Таблица увеличения объема грунта при разрыхлении.

Таблица Наибольшей крутизны откосов траншей и котлованов, град.

Грунты

Крутизна откосов при глубине выемки, м.

1,5

3

5

Насыпные

56

45

38

Песчаные и гравийные влажные

63

45

45

Глинистые:

супесь

76

56

50

суглинок

90

63

53

глина

90

76

63

Лёссы сухие

90

63

63

Моренные:

песчаные, супесчаные

76

60

53

суглинистые

78

63

57

Боковое давление грунта

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *