Реле поляризованные

Управление бистабильным поляризованным реле с двумя обмотками постоянным (логическим) уровнем

Как следует из названия, эти реле имеют два стабильных положения якоря. Это означает, что для перевода реле в другое стабильное состояние, на соответствующую обмотку необходимо подать короткий переключающий импульс. В промежутке между переключающими импульсами реле обесточено и энергии не потребляет.
Это относится к реле с двумя обмотками, существуют поляризованные реле с одной обмоткой. У них для перевода реле в другое стабильное состояние требуется кратковременно подать импульс противоположной полярности. Это требует усложнения схемы (применение Н-моста), и в данной статье не рассматривается.
Общим для всех бистабильных поляризованных реле является то, что это реле импульсные. Т.е. управлять ими нужно короткими импульсами. Подача постоянного напряжения на обмотку импульсного реле в течении достаточно долгого времени способна вывести его из строя. Обычно это зафиксировано в паспорте реле. Импульсное же управление зачастую приводит к неоправданому переусложнению схемы устройства.
Ниже приведен схемотехнический прием для управления импульсным реле постоянным уровнем.

Можно заметить, что элементы DD1 включены по схеме «исключающее ИЛИ-НЕ» с выводами от промежуточных элементов и интегрирующей цепью R1C1 на входе обратной связи. Элемент DD1.4 в работе схемы не участвует и служит только о сигнализации о нештатных (аварийных) ситуациях.
Не буду здесь приводить таблицу истинности элемента «исключающее ИЛИ-НЕ», приложу проект Proteus (XOR-NOT.zip), желающие могут составить ее самостоятельно.

О назначении интегрирующей цепи R1C1. На время переключения контактов реле один вход составного элемента «повисает» в воздухе. Это может привести к неработоспособности схемы или паразитной генерации. Поэтому на время переключения этот вход «исключающее ИЛИ-НЕ» удерживается в предыдущем состоянии за счет инерционности С1. Постоянная времени цепи R1C1 влияет только на время перезарядки через контакты реле. А вот постоянная времени С1+»Входное сопротивление двух логических элементов» должна превышать время переключения контактов. Расчитать его проблематично, нужно подбирать на макетке. Но и завышать его не нужно, от него зависит время токопотребления реле. Нагрузочная способность выходов примененных логических элементов тут не влияет, т.к. зарядка/разрядка конденсатора С1 производится через контакты реле.
О необходимости элемента DD1.4. Он нужен только для генерации сигнала ошибки при неисправности реле. Короткие импульсы на время переключения глазом не фиксируются. Если у вас модуль с одиночным реле, сигнализацию можно сделать так (Рис. 1):

Если же модулей несколько, сигнал ошибки можно обьединить (Рис. 2).
Наглядный пример как это работает в Proteus, на входе логический 0:

На входе логический 1:

Хорошо видно, что в обоих случаях обмотки реле обесточены, токопотребление схемы определяется ничтожным статическим током КМОП микросхемы.
Недостаток данной схемы в требовании применения двухкатушечного бистабильного реле с «лишним» переключающим контактом для обратной связи.
Приложены (примеры для Proteus 7):
Xor-not.zip — учебный пример для понимания логики работы элемента «исключающее ИЛИ-НЕ»;
PLBI_Direct.zip — пример применения бистабильного реле в данной схеме;
P.S.
Схема была применена с реле РПС20 паспорт РС4.521.754

Аналогичные реле использовались в блоке памяти истребителей МИГ-15, МИГ-17.
P.P.S.
Из двухобмоточного поляризованного реле легко сделать однообмоточное, соединив обмотки последовательно в правильной полярности. Пример (классика), Радио, 1986 г. №8, стр.19. Квазисенсорный сетевой выключатель:

3-9. Поляризованные реле

Поляризованные реле работают на электромагнитном принципе. Отличительной особенностью их является то, что на якорь реле действуют два независимых магнитных потока: поляризующий ФП, создаваемый постоянным магнитом, и рабочий ФP, создаваемый током, проходящим по обмоткам реле.
Различают две системы поляризованных реле: дифференциальную и мостовую.

На рис. 3-49 показан принцип действия поляризованного реле дифференциальной системы. Реле состоит из постоянного магнита 1, создающего поляризующий магнитный поток ФП, электромагнита 2 с обмоткой 3, создающей рабочий магнитный поток ФР, якоря 4 с укрепленными на нем подвижными контактами 5 и неподвижных контактов 6.
При отсутствии тока в обмотке реле (рис. 3-49, а) в воздушном зазоре замыкается только поляризующий магнитный поток ФП. Если якорь реле установить в строго нейтральное положение, то поляризующий магнитный поток будет разветвляться на две равные части, левую и правую, т. е.

В этом случае на якорь действуют равные по величине, но противоположно направленные силы притяжения к левому и правому полюсам электромагнита. Поскольку результирующая сила, действующая на якорь, будет при этом равна нулю, то якорь будет в равновесии и должен оставаться в нейтральном положении.

Однако такое положение является неустойчивым и практически недостижимым. Достаточно небольшой несимметрии в воздушных зазорах или внешнего толчка, смещающего якорь с нейтрального положения, как равенство магнитных потоков в правом и левом зазорах, а следовательно, и сил, воздействующих на якорь, нарушится. В результате якорь притянется к тому полюсу электромагнита, сила притяжения к которому стала больше (например, к левому на рис. 3-49, б).
При положении якоря у левого полюса левый зазор меньше правого и, следовательно, Фп.лев. > Фп.прав.. Если теперь подать на обмотку реле напряжение постоянного тока Uраб указанной на рис. 3-49, б полярности (минус на зажим «+» и плюс на зажим «—»). то под влиянием тока Iр в воздушном зазоре появится магнитный поток Фр, направленный от правого полюса электромагнита к левому. При этом суммарные магнитные потоки в правом и левом воздушном зазорах будут равны:

В результате того, что магнитный поток в левом зазоре увеличился, а в правом — уменьшился, якорь будет еще сильнее притягиваться к левому полюсу, замыкая левый контакт.
Если изменить полярность напряжения Uраб, как показано на рис. 3-49, в (плюс на зажим «+» и минус на зажим «—»), то направление тока Iр и магнитного потока Фр изменится на противоположное. В этом случае суммарные магнитные потоки в правом и левом воздушных зазорах будут равны:

В результате того, что магнитный поток в левом зазоре уменьшился, а в правом — увеличился, якорь притянется к правому полюсу электромагнита. При этом разомкнётся левый и замкнется правый контакт реле.
При снятии рабочего напряжения якорь реле останется у правого полюса электромагнита, продолжая замыкать правый контакт. Для того чтобы реле переключилось и замкнуло левый контакт, необходимо подать на его рабочую обмотку напряжение обратной полярности (как в случае, показанном на рис. 3-49, б). После снятия этого напряжения якорь реле останется у левого полюса, замыкая левый контакт.
Из рассмотренного принципа действия следует, что поляризованное реле срабатывает при определенной полярности рабочего напряжения. Это свойство принято называть направленностью действия .
Поляризованные реле могут применяться для работы только на постоянном токе. При подаче переменного тока якорь реле будет попеременно притягиваться то к правому, то к левому полюсу электромагнита, т. е. вибрировать с частотой приложенного напряжения.
У рассмотренного выше поляризованного реле неподвижные контакты были расположены по обе стороны нейтральной линии и на равном расстоянии от нее. Такая настройка контактов называется нейтральной. Особенностью нейтральной настройки контактов является то, что при снятии рабочего напряжения якорь реле остается в том же положении, в которое переместился при подаче этого напряжения, и что для переключения контактов реле необходимо подать на его обмотку напряжение обратной полярности.
Применяется также другая настройка контактов «на преобладание». Для этого один из контактов, например правый (рис. 3-50, б), выдвигается за нейтральную линию. При такой настройке левый зазор между якорем и полюсом электромагнита всегда меньше правого и, следовательно, Фп.лев. > >Фп.прав. Поэтому при снятии рабочего напряжения якорь реле будет всегда возвращаться к левому полюсу.

На рис. 3-50, в показана еще одна так называемая трех-позиционная настройка контактов: при подаче напряжения одной полярности замыкается один контакт, другой полярности — другой контакт, а при снятии напряжения якорь возвращается пружиной в нейтральное положение.
Наибольшее применение получили в релейной защите поляризованные реле мостовой системы типов: РП-4 с нейтральной настройкой контактов, РП-5 с трехпозиционной настройкой и РП-7 с настройкой на преобладание. Устройство поляризованного реле типа РП показано на рис. 3-51 и внешний вид — на рис. 3-52.

Широкое применение поляризованные реле получили благодаря их высокой чувствительности и быстродействию.
Вследствие того, что усилие на якоре реле создается как постоянным магнитом, так и электромагнитом, реле имеет при срабатывании весьма небольшое потребление мощности. Так, реле РП-4 и РП-5 имеют мощность срабатывания-0,01— 0,15 мВт, реле РП-7 —0,15—1 мВт. Время срабатывания составляет у реле РП-4 и РП-7 порядка 5 мс (0,005 с) и у реле РП-5 — 10—15 мс.
Поляризованные реле имеют весьма высокую кратность термической устойчивости, составляющую 20—50 против примерно 1,5 у обычных электромагнитных реле.
Благодаря высокой чувствительности и малому потреблению поляризованные реле широко применяются для выполнения чувствительных реле тока, напряжения, мощности и других с включением через выпрямители. В зависимости от требований к характеристикам реле и условий работы используются различные схемы выпрямления. Наиболее широко распространенная схема двухполупериодного выпрямления приведена на рис. 3-19.

Устройство, принцип действия и особенности поляризованного реле

В поляризованных реле, кроме основного потока, созда­ваемого катушкой, действует дополнительный поляризую­щий магнитный поток, который создается установленным в реле постоянным магнитом. Благодаря поляризующему потоку направление электромагнитного усилия, действую­щего на якорь, изменяется в зависимости от направления тока в катушке.

Поляризованные реле работают на электромагнитном принципе. Отличительной особенностью их является то, что на якорь реле действуют два независимых магнитных потока: поляризующий ФП, создаваемый постоянным магнитом, и рабочий ФP, создаваемый током, проходящим по обмоткам реле.
Различают две системы поляризованных реле: дифференциальную и мостовую.

Поляризованного реле дифференциальной системы. Реле состоит из постоянного магнита 1, создающего поляризующий магнитный поток ФП, электромагнита 2 с обмоткой 3, создающей рабочий магнитный поток ФР, якоря 4 с укрепленными на нем подвижными контактами 5 и неподвижных контактов 6.

При отсутствии тока в обмотке реле в воздушном зазоре замыкается только поляризующий магнитный поток ФП. Если якорь реле установить в строго нейтральное положение, то поляризующий магнитный поток будет разветвляться на две равные части, левую и правую, т. е.

В этом случае на якорь действуют равные по величине, но противоположно направленные силы притяжения к левому и правому полюсам электромагнита. Поскольку результирующая сила, действующая на якорь, будет при этом равна нулю, то якорь будет в равновесии и должен оставаться в нейтральном положении.

Поляризованные электромагнитные реле имеют сле­дующие преимущества перед нейтральными:

1) Выходной параметр (состояние контактной системы) зависит от полярности управляющего импульса, что рас­ширяет функциональные возможности реле.

2) Реле могут управляться кратковременными импуль­сами тока.

3) Замкнутое состояние контактов сохраняется после окончания управляющего импульса, что позволяет исполь­зовать реле как элемент памяти.

4) После срабатывания не потребляется мощность для удержания якоря в притянутом положении.

5) Реле обладают высокой чувствительностью и высоким коэффициентом усиления по мощности.

6) За счет положения упоров можно осуществлять од­нопозиционную, нейтральную и двухпозиционную настрой­ку реле.

Тиристорные пускатели

Коммутация тока в цепи электромагнитными пускателями, контакторами, реле, аппаратами ручного управления (рубильниками, пакетными выключателями, переключателями, кнопками и т. д.) осуществляется изменением в широких пределах электрического сопротивления коммутирующего органа. В контактных аппаратах таким органом является межконтактный промежуток. В режиме коммутации цепи происходит очень быстрое скачкообразное изменение сопротивления меж контактного промежутка от минимальных до максимальных предельных значений (отключение), или наоборот (включение).


Бесконтактными электрическими аппаратами называют устройства, предназначенные для включения и отключения (коммутации) электрических цепей без физического разрыва самой цепи. Основой для построения бесконтактных аппаратов служат различные элементы с нелинейным электрическим сопротивлением, величина которого изменяется в достаточно широких пределах, в настоящее время это — тиристоры и транзисторы, раньше использовались магнитные усилители.

Достоинства и недостатки бесконтактных аппаратов по сравнению с обычными пускателями и контакторами

По сравнению с контактными аппаратами бесконтактные имеют преимущества:

— не образуется электрическая дуга, оказывающая разрушительное воздействие на детали аппарата; время срабатывания может достигать небольших величин, поэтому они допускают большую частоту срабатываний (сотни тысяч срабатываний в час),

— не изнашиваются механически,

Недостатки:

— они не обеспечивают гальваническую развязку в цепи и не создают видимого разрыва в ней, что важно с точки зрения техники безопасности;

— глубина коммутации на несколько порядков меньше контактных аппаратов,

— габариты, вес и стоимость на сопоставимые технические параметры выше.

Чувствительны к перенапряжениям и сверхтокам. Чем больше номинальный ток элемента, тем ниже обратное напряжение, которое способен выдержать этот элемент в непроводящем состоянии. Бесконтактные аппараты нельзя заменить контактными в условиях большой частоты срабатываний и большого быстродействия.


Бесконтактные тиристорные пускатели: Для включения, отключения, реверсирования в схемах управления асинхронными электродвигателями разработаны тиристорные трехполюсные пускатели серии ПТ. Пускатель трехполюсного исполнения в схеме имеет шесть тиристоров VS1, …, VS6, включенных по два тиристора на каждый полюс. Включение пускателя осуществляется посредством кнопок управления SB1 «Пуск» и SB2 «Стоп».Схема тиристорного пускателя предусматривает защиту электродвигателя от перегрузки, для этого в силовую часть схемы установлены трансформаторы тока ТА1 и ТА2, вторичные обмотки которых включены в блок управления тиристорами.

Принцип действия поляризованного реле

В электрических цепях широко используются различные виды реле. Они производят замыкание и размыкание цепи на различных участках при условии изменений электрических, механических и других величин на входе этих устройств. Все приборы этого типа различаются между собой по сигналу управления. Среди них, часто применяется поляризованное реле, принцип действия которого такой же, как и на электромагнитных выключателях.

Основные виды электромагнитных реле

Главным назначением этих устройств является коммутация при больших токах нагрузки. Иначе говоря, они выполняют функции переключателей, которые посредством слабых токов включают цепи с большими токами. Если такую цепь включать напрямую без реле, то проводка и кнопка просто не выдержит высоких токов и расплавится. Реле принимает на себя большую токовую нагрузку и производит коммутацию с помощью мощных контактов.

Электромагнитные выключатели разделяются на две основные группы:

  1. Нейтральные реле имеют наиболее простую конструкцию. В его состав входит контактная и магнитная система. Каждая контактная группа включает в себя два неподвижных и один общий подвижный контакт. Магнитная система состоит из подвижного якоря, сердечника, обмотки и ярма.
  2. Поляризованное реле состоит из таких же систем. Однако в магнитной системе присутствует два сердечника с обмотками, а также контактная тяга и постоянный магнит.

В отличие от нейтральных, электромагнитные поляризованные устройства способны срабатывать в зависимости от полярности управляющего сигнала. Для изготовления сердечника используется электротехническая листовая сталь, что позволяет значительно увеличить быстроту действия прибора.

Действие поляризованных устройств

При отсутствии тока в обмотках, устройство находится в исходном положении. Однако в нем уже имеется магнитный поток, создаваемый постоянным магнитом. Происходит замыкание силовых линий на два контура прибора. Первый контур состоит из самого магнита, ярма, левого сердечника, якоря и снова магнита. Другой контур проходит через магнит и ярмо к правому сердечнику и якорю, а затем вновь возвращается в исходную точку.

В отличие от рассмотренных ранее нейтральных электромагнитных реле, у поляризованного реле направление электромагнитного усилия зависит от полярности сигнала постоянного тока в обмотке. Поляризация этих реле осуществляется при помощи постоянного магнита.

Существует много конструктивных разновидностей поляризованных реле, которые классифицируются по ряду признаков. По конструктивной схеме магнитной цепи различают реле с последовательной, параллельной (дифференциальной) и мостовой магнитными цепями, по числу обмоток управления — одно и многообмоточные, по способу настройки контактов (числу устойчивых положений якоря) — двух- и трехпозиционные.

Поляризованные реле могут быть использованы также в качестве вибропреобразователей, но наибольшее распространение они получили в маломощной автоматике, особенно в следящих системах при управлении реверсивными двигателями.

К числу достоинств поляризованных реле относятся: высокая чувствительность, которая характеризуется малой мощностью срабатывания и составляет 10-5 Вт; большой коэффициент управления; малое время срабатывания (единицы миллисекунд).

Недостатки по сравнению с нейтральными электромагнитными реле следующие: несколько сложнее конструкция; большие габаритные размеры, вес и стоимость.

В поляризованных реле используют дифференциальные и мостовые схемы магнитных цепей, которые имеют много разновидностей (название цепей определяется типом электрической схемы замещения электромагнитной системы). На рис. 11.11 изображено поляризованное реле с дифференциальной схемой магнитной цепи.

На якорь реле действует два независимых друг от друга потока: поток Ф0(п), создаваемый постоянным магнитом 3 и не зависящий от рабочего состояния схемы, в которую включено реле, и рабочий (управляющий) поток Фэ(р), создаваемый намагничивающими катушками 1 и 1’ и зависящий от тока, протекающего по их обмоткам.

Электромагнитное усилие, действующее на якорь 4, зависит, таким образом, от суммарного действия потоков Фэ(р) и Ф0(п). Изменение направления электромагнитного усилия при изменении полярности тока в рабочей обмотке происходит вследствие того, что изменяется направление рабочего потока относительно поляризующего.

Поляризующий поток Ф0(п) проходит по якорю и разветвляется на две части — Ф01 и Ф02 в соответствии с проводимостями воздушных зазоров слева δЛ и справа δпр от якоря. В зависимости от полярности управляющего сигнала рабочий поток Фэ(р) вычитается из потока Ф01 в зазоре слева от якоря и прибавляется к потоку Ф02 справа от якоря (как показано на рис. 11.11), или наоборот. В случае, показанном на рисунке, якорь перекинется из левого положения в правое. При выключении сигнала якорь будет находиться в том положении, которое он занимал до выключения сигнала. Таким образом, результирующее электромагнитное усилие, действующее на якорь, будет направлено в строну того зазора, где магнитные потоки суммируются.

В поляризованном реле с мостовой схемой магнитной цепи (рис. 11.12) силы притяжения якоря, включенного в одну из диагоналей этой схемы, действуют так же, как и в дифференциальной схеме, т.е. в воздушном зазоре с одной стороны якоря рабочий поток Фэ(р) направлен согласно с поляризующим потоком Ф0(П), а с другой — встречно. Мостовые схемы поляризованных реле имеют более высокую стабильность параметров и устойчивость к внешним механическим воздействиям.

Поляризованные реле выпускаются трех видов настройки. Реле, изображенное на рис. 11.11, является двухпозиционным. Если неподвижные контакты 5 и 5′ симметрично расположены относительно нейтральной линии (якорь отрегулирован симметрично), то при выключении управляющего сигнала якорь реле остается в том же положении, которое он занимал при наличии управляющего сигнала. Повторное включение управляющего сигнала прежней полярности не вызовет изменения положения якоря. Если изменить полярность управляющего сигнала, то якорь перебросится в другое положение и останется в нем после снятия сигнала. Такая настройка называется нейтральной или двухпозиционной.

Если (рис. 11.13, а) один из контактов 1 или 2 выдвинут за нейтральную линию, то реле является двухпозиционным с преобладанием к одному из контактов. В этом случае при выключенном реле якорь всегда прижат к левому контакту 1 (к правому контакту 2, если за нейтральную линию выдвинут левый контакт) и перебрасывается вправо лишь на время протекания в управляющей обмотке тока соответствующей полярности.

Трехпозиционное реле имеет симметрично расположенные от нейтральной линии неподвижные контакты (рис. 11.13, б). Якорь при отсутствии управляющего сигнала удерживается в среднем положении с помощью специальных пружин, расположенных с двух сторон, или закрепляется на плоской пружине, упругость которой создает устойчивое положение равновесия в среднем положении. При подаче сигнала в управляющую обмотку контакт на якоре замыкается с левым или правым контактом (в зависимости от полярности сигнала) и возвращается в нейтральное положение после снятия сигнала.

Поляризованные реле находят широкое применение в схемах автоматики благодаря своим характерным особенностям. Наличие нескольких обмоток позволяет использовать их в качестве логических элементов, небольшая мощность срабатывания — в качестве элементов контроля небольших электрических сигналов, малое время срабатывания и чувствительность к полярности входных сигналов — в качестве амплитудных модуляторов и демодуляторов. Благодаря высокой чувствительности поляризованные реле часто используют в маломощных цепях переменного тока с включением через выпрямитель.

5. Герконы

Реле поляризованные

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *